@@ -1,17 +0,0 @@ | |||||
""" | |||||
Auto-replay chat robot abstract class | |||||
""" | |||||
from bridge.context import Context | |||||
from bridge.reply import Reply | |||||
class Bot(object): | |||||
def reply(self, query, context: Context = None) -> Reply: | |||||
""" | |||||
bot auto-reply content | |||||
:param req: received message | |||||
:return: reply content | |||||
""" | |||||
raise NotImplementedError |
@@ -1,72 +0,0 @@ | |||||
""" | |||||
channel factory | |||||
""" | |||||
from common import const | |||||
def create_bot(bot_type): | |||||
""" | |||||
create a bot_type instance | |||||
:param bot_type: bot type code | |||||
:return: bot instance | |||||
""" | |||||
# if bot_type == const.BAIDU: | |||||
# # 替换Baidu Unit为Baidu文心千帆对话接口 | |||||
# # from bot.baidu.baidu_unit_bot import BaiduUnitBot | |||||
# # return BaiduUnitBot() | |||||
# from bot.baidu.baidu_wenxin import BaiduWenxinBot | |||||
# return BaiduWenxinBot() | |||||
if bot_type == const.CHATGPT: | |||||
# ChatGPT 网页端web接口 | |||||
from bot.chatgpt.chat_gpt_bot import ChatGPTBot | |||||
return ChatGPTBot() | |||||
elif bot_type == const.OPEN_AI: | |||||
# OpenAI 官方对话模型API | |||||
from bot.openai.open_ai_bot import OpenAIBot | |||||
return OpenAIBot() | |||||
# elif bot_type == const.CHATGPTONAZURE: | |||||
# # Azure chatgpt service https://azure.microsoft.com/en-in/products/cognitive-services/openai-service/ | |||||
# from bot.chatgpt.chat_gpt_bot import AzureChatGPTBot | |||||
# return AzureChatGPTBot() | |||||
# elif bot_type == const.XUNFEI: | |||||
# from bot.xunfei.xunfei_spark_bot import XunFeiBot | |||||
# return XunFeiBot() | |||||
# elif bot_type == const.LINKAI: | |||||
# from bot.linkai.link_ai_bot import LinkAIBot | |||||
# return LinkAIBot() | |||||
# elif bot_type == const.CLAUDEAI: | |||||
# from bot.claude.claude_ai_bot import ClaudeAIBot | |||||
# return ClaudeAIBot() | |||||
# elif bot_type == const.CLAUDEAPI: | |||||
# from bot.claudeapi.claude_api_bot import ClaudeAPIBot | |||||
# return ClaudeAPIBot() | |||||
# elif bot_type == const.QWEN: | |||||
# from bot.ali.ali_qwen_bot import AliQwenBot | |||||
# return AliQwenBot() | |||||
# elif bot_type == const.QWEN_DASHSCOPE: | |||||
# from bot.dashscope.dashscope_bot import DashscopeBot | |||||
# return DashscopeBot() | |||||
# elif bot_type == const.GEMINI: | |||||
# from bot.gemini.google_gemini_bot import GoogleGeminiBot | |||||
# return GoogleGeminiBot() | |||||
# elif bot_type == const.ZHIPU_AI: | |||||
# from bot.zhipuai.zhipuai_bot import ZHIPUAIBot | |||||
# return ZHIPUAIBot() | |||||
# elif bot_type == const.MOONSHOT: | |||||
# from bot.moonshot.moonshot_bot import MoonshotBot | |||||
# return MoonshotBot() | |||||
# elif bot_type == const.MiniMax: | |||||
# from bot.minimax.minimax_bot import MinimaxBot | |||||
# return MinimaxBot() | |||||
raise RuntimeError |
@@ -1,323 +0,0 @@ | |||||
# encoding:utf-8 | |||||
import time | |||||
import openai | |||||
import openai.error | |||||
import requests | |||||
import json | |||||
from bot.bot import Bot | |||||
from bot.chatgpt.chat_gpt_session import ChatGPTSession | |||||
from bot.openai.open_ai_image import OpenAIImage | |||||
from bot.session_manager import SessionManager | |||||
from bridge.context import ContextType | |||||
from bridge.reply import Reply, ReplyType | |||||
from common.log import logger | |||||
from common.token_bucket import TokenBucket | |||||
from config import conf, load_config | |||||
from channel.chat_message import ChatMessage | |||||
from common import memory | |||||
# OpenAI对话模型API (可用) | |||||
class ChatGPTBot(Bot, OpenAIImage): | |||||
def __init__(self): | |||||
super().__init__() | |||||
# set the default api_key | |||||
openai.api_key = conf().get("open_ai_api_key") | |||||
if conf().get("open_ai_api_base"): | |||||
openai.api_base = conf().get("open_ai_api_base") | |||||
proxy = conf().get("proxy") | |||||
if proxy: | |||||
openai.proxy = proxy | |||||
if conf().get("rate_limit_chatgpt"): | |||||
self.tb4chatgpt = TokenBucket(conf().get("rate_limit_chatgpt", 20)) | |||||
self.sessions = SessionManager(ChatGPTSession, model=conf().get("model") or "gpt-3.5-turbo") | |||||
self.args = { | |||||
"model": conf().get("model") or "gpt-3.5-turbo", # 对话模型的名称 | |||||
"temperature": conf().get("temperature", 0.9), # 值在[0,1]之间,越大表示回复越具有不确定性 | |||||
# "max_tokens":4096, # 回复最大的字符数 | |||||
"top_p": conf().get("top_p", 1), | |||||
"frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 | |||||
"presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 | |||||
"request_timeout": conf().get("request_timeout", None), # 请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间 | |||||
"timeout": conf().get("request_timeout", None), # 重试超时时间,在这个时间内,将会自动重试 | |||||
} | |||||
def reply(self, query, context=None): | |||||
# acquire reply content | |||||
if context.type == ContextType.TEXT: | |||||
# print(context.__dict__) | |||||
msg: ChatMessage = context.kwargs['msg'] | |||||
# print(msg.from_user_nickname) | |||||
logger.info("[CHATGPT] {} query={}".format(msg.from_user_nickname,query)) | |||||
session_id = context["session_id"] | |||||
# print(f'会话id:{session_id}') | |||||
reply = None | |||||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"]) | |||||
if query in clear_memory_commands: | |||||
self.sessions.clear_session(session_id) | |||||
reply = Reply(ReplyType.INFO, "记忆已清除") | |||||
elif query == "#清除所有": | |||||
self.sessions.clear_all_session() | |||||
reply = Reply(ReplyType.INFO, "所有人记忆已清除") | |||||
elif query == "#更新配置": | |||||
load_config() | |||||
reply = Reply(ReplyType.INFO, "配置已更新") | |||||
if reply: | |||||
return reply | |||||
session = self.sessions.session_query(query, session_id) | |||||
logger.debug("[CHATGPT] session query={}".format(session.messages)) | |||||
api_key = context.get("openai_api_key") | |||||
model = context.get("gpt_model") | |||||
new_args = None | |||||
if model: | |||||
new_args = self.args.copy() | |||||
new_args["model"] = model | |||||
# if context.get('stream'): | |||||
# # reply in stream | |||||
# return self.reply_text_stream(query, new_query, session_id) | |||||
reply_content = self.reply_text(session, api_key, args=new_args) | |||||
logger.debug( | |||||
"[CHATGPT] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format( | |||||
session.messages, | |||||
session_id, | |||||
reply_content["content"], | |||||
reply_content["completion_tokens"], | |||||
) | |||||
) | |||||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0: | |||||
reply = Reply(ReplyType.ERROR, reply_content["content"]) | |||||
elif reply_content["completion_tokens"] > 0: | |||||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"]) | |||||
reply = Reply(ReplyType.TEXT, reply_content["content"]) | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, reply_content["content"]) | |||||
logger.debug("[CHATGPT] reply {} used 0 tokens.".format(reply_content)) | |||||
return reply | |||||
elif context.type == ContextType.IMAGE_CREATE: | |||||
ok, retstring = self.create_img(query, 0) | |||||
reply = None | |||||
if ok: | |||||
reply = Reply(ReplyType.IMAGE_URL, retstring) | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, retstring) | |||||
return reply | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type)) | |||||
return reply | |||||
def reply_text(self, session: ChatGPTSession, api_key=None, args=None, retry_count=0) -> dict: | |||||
""" | |||||
call openai's ChatCompletion to get the answer | |||||
:param session: a conversation session | |||||
:param session_id: session id | |||||
:param retry_count: retry count | |||||
:return: {} | |||||
""" | |||||
try: | |||||
if conf().get("rate_limit_chatgpt") and not self.tb4chatgpt.get_token(): | |||||
raise openai.error.RateLimitError("RateLimitError: rate limit exceeded") | |||||
# if api_key == None, the default openai.api_key will be used | |||||
if args is None: | |||||
args = self.args | |||||
# Define additional parameters | |||||
additional_params = { | |||||
"chatId": session.session_id, | |||||
"detail": True | |||||
} | |||||
# Combine the additional params with the existing args (if any) | |||||
args.update(additional_params) | |||||
# msgs=session.messages | |||||
# cache_data = memory.USER_INTERACTIVE_CACHE.get(session.session_id) | |||||
# # Determine messages to send based on cache data | |||||
# messages_to_send = msgs[-1] if cache_data and cache_data.get('interactive') else msgs | |||||
# print(msgs[-1]) | |||||
# print('----------------') | |||||
# # Send the response using OpenAI API | |||||
# response = openai.ChatCompletion.create(api_key=api_key, messages=messages_to_send, **args) | |||||
messages_to_send=session.messages | |||||
cache_data = memory.USER_INTERACTIVE_CACHE.get(session.session_id) | |||||
if cache_data and cache_data.get('interactive'): | |||||
messages_to_send=[session.messages[-1]] | |||||
print(messages_to_send) | |||||
response = openai.ChatCompletion.create(api_key=api_key, messages=messages_to_send, **args) | |||||
# print("{}".format(session.__dict__)) | |||||
logger.info("[CHATGPT] 请求={}".format(messages_to_send)) | |||||
# print(f'会话id:{session.session_id}') | |||||
# logger.info("[CHATGPT] 响应={}".format(response)) | |||||
logger.info("[CHATGPT] 响应={}".format(json.dumps(response, separators=(',', ':'),ensure_ascii=False))) | |||||
# logger.info("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"])) | |||||
content=response.choices[0]["message"]["content"] | |||||
description = '' | |||||
userSelectOptions = [] | |||||
if isinstance(content, list) and any(item.get("type") == "interactive" for item in content): | |||||
# print(content) | |||||
for item in content: | |||||
if item["type"] == "interactive" and item["interactive"]["type"] == "userSelect": | |||||
params = item["interactive"]["params"] | |||||
description = params.get("description") | |||||
userSelectOptions = params.get("userSelectOptions", []) | |||||
values_string = "\n".join(option["value"] for option in userSelectOptions) | |||||
if description is not None: | |||||
memory.USER_INTERACTIVE_CACHE[session.session_id] = { | |||||
"interactive":True | |||||
} | |||||
return { | |||||
"total_tokens": response["usage"]["total_tokens"], | |||||
"completion_tokens": response["usage"]["completion_tokens"], | |||||
"content": description + '------------------------------\n'+values_string, | |||||
} | |||||
elif isinstance(content, list) and any(item.get("type") == "text" for item in content): | |||||
memory.USER_INTERACTIVE_CACHE[session.session_id] = { | |||||
"interactive":False | |||||
} | |||||
text='' | |||||
for item in content: | |||||
if item["type"] == "text": | |||||
text=item["text"]["content"] | |||||
if text=='': | |||||
args.pop('chatId', None) # The second argument (None) is the default return value if the key doesn't exist | |||||
args.pop('detail', None) | |||||
response = openai.ChatCompletion.create(api_key=api_key, messages=messages_to_send, **args) | |||||
text=response.choices[0]["message"]["content"] | |||||
return { | |||||
"total_tokens": response["usage"]["total_tokens"], | |||||
"completion_tokens": response["usage"]["completion_tokens"], | |||||
"content": text, | |||||
} | |||||
else: | |||||
memory.USER_INTERACTIVE_CACHE[session.session_id] = { | |||||
"interactive":False | |||||
} | |||||
return { | |||||
"total_tokens": response["usage"]["total_tokens"], | |||||
"completion_tokens": response["usage"]["completion_tokens"], | |||||
"content": content.lstrip("\n"), | |||||
} | |||||
except Exception as e: | |||||
need_retry = retry_count < 2 | |||||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"} | |||||
if isinstance(e, openai.error.RateLimitError): | |||||
logger.warn("[CHATGPT] RateLimitError: {}".format(e)) | |||||
result["content"] = "提问太快啦,请休息一下再问我吧" | |||||
if need_retry: | |||||
time.sleep(20) | |||||
elif isinstance(e, openai.error.Timeout): | |||||
logger.warn("[CHATGPT] Timeout: {}".format(e)) | |||||
result["content"] = "我没有收到你的消息" | |||||
if need_retry: | |||||
time.sleep(5) | |||||
elif isinstance(e, openai.error.APIError): | |||||
logger.warn("[CHATGPT] Bad Gateway: {}".format(e)) | |||||
result["content"] = "请再问我一次" | |||||
if need_retry: | |||||
time.sleep(10) | |||||
elif isinstance(e, openai.error.APIConnectionError): | |||||
logger.warn("[CHATGPT] APIConnectionError: {}".format(e)) | |||||
result["content"] = "我连接不到你的网络" | |||||
if need_retry: | |||||
time.sleep(5) | |||||
else: | |||||
logger.exception("[CHATGPT] Exception: {}".format(e)) | |||||
need_retry = False | |||||
self.sessions.clear_session(session.session_id) | |||||
if need_retry: | |||||
logger.warn("[CHATGPT] 第{}次重试".format(retry_count + 1)) | |||||
return self.reply_text(session, api_key, args, retry_count + 1) | |||||
else: | |||||
return result | |||||
class AzureChatGPTBot(ChatGPTBot): | |||||
def __init__(self): | |||||
super().__init__() | |||||
openai.api_type = "azure" | |||||
openai.api_version = conf().get("azure_api_version", "2023-06-01-preview") | |||||
self.args["deployment_id"] = conf().get("azure_deployment_id") | |||||
def create_img(self, query, retry_count=0, api_key=None): | |||||
text_to_image_model = conf().get("text_to_image") | |||||
if text_to_image_model == "dall-e-2": | |||||
api_version = "2023-06-01-preview" | |||||
endpoint = conf().get("azure_openai_dalle_api_base","open_ai_api_base") | |||||
# 检查endpoint是否以/结尾 | |||||
if not endpoint.endswith("/"): | |||||
endpoint = endpoint + "/" | |||||
url = "{}openai/images/generations:submit?api-version={}".format(endpoint, api_version) | |||||
api_key = conf().get("azure_openai_dalle_api_key","open_ai_api_key") | |||||
headers = {"api-key": api_key, "Content-Type": "application/json"} | |||||
try: | |||||
body = {"prompt": query, "size": conf().get("image_create_size", "256x256"),"n": 1} | |||||
submission = requests.post(url, headers=headers, json=body) | |||||
operation_location = submission.headers['operation-location'] | |||||
status = "" | |||||
while (status != "succeeded"): | |||||
if retry_count > 3: | |||||
return False, "图片生成失败" | |||||
response = requests.get(operation_location, headers=headers) | |||||
status = response.json()['status'] | |||||
retry_count += 1 | |||||
image_url = response.json()['result']['data'][0]['url'] | |||||
return True, image_url | |||||
except Exception as e: | |||||
logger.error("create image error: {}".format(e)) | |||||
return False, "图片生成失败" | |||||
elif text_to_image_model == "dall-e-3": | |||||
api_version = conf().get("azure_api_version", "2024-02-15-preview") | |||||
endpoint = conf().get("azure_openai_dalle_api_base","open_ai_api_base") | |||||
# 检查endpoint是否以/结尾 | |||||
if not endpoint.endswith("/"): | |||||
endpoint = endpoint + "/" | |||||
url = "{}openai/deployments/{}/images/generations?api-version={}".format(endpoint, conf().get("azure_openai_dalle_deployment_id","text_to_image"),api_version) | |||||
api_key = conf().get("azure_openai_dalle_api_key","open_ai_api_key") | |||||
headers = {"api-key": api_key, "Content-Type": "application/json"} | |||||
try: | |||||
body = {"prompt": query, "size": conf().get("image_create_size", "1024x1024"), "quality": conf().get("dalle3_image_quality", "standard")} | |||||
response = requests.post(url, headers=headers, json=body) | |||||
response.raise_for_status() # 检查请求是否成功 | |||||
data = response.json() | |||||
# 检查响应中是否包含图像 URL | |||||
if 'data' in data and len(data['data']) > 0 and 'url' in data['data'][0]: | |||||
image_url = data['data'][0]['url'] | |||||
return True, image_url | |||||
else: | |||||
error_message = "响应中没有图像 URL" | |||||
logger.error(error_message) | |||||
return False, "图片生成失败" | |||||
except requests.exceptions.RequestException as e: | |||||
# 捕获所有请求相关的异常 | |||||
try: | |||||
error_detail = response.json().get('error', {}).get('message', str(e)) | |||||
except ValueError: | |||||
error_detail = str(e) | |||||
error_message = f"{error_detail}" | |||||
logger.error(error_message) | |||||
return False, error_message | |||||
except Exception as e: | |||||
# 捕获所有其他异常 | |||||
error_message = f"生成图像时发生错误: {e}" | |||||
logger.error(error_message) | |||||
return False, "图片生成失败" | |||||
else: | |||||
return False, "图片生成失败,未配置text_to_image参数" |
@@ -1,104 +0,0 @@ | |||||
from bot.session_manager import Session | |||||
from common.log import logger | |||||
from common import const | |||||
""" | |||||
e.g. [ | |||||
{"role": "system", "content": "You are a helpful assistant."}, | |||||
{"role": "user", "content": "Who won the world series in 2020?"}, | |||||
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, | |||||
{"role": "user", "content": "Where was it played?"} | |||||
] | |||||
""" | |||||
class ChatGPTSession(Session): | |||||
def __init__(self, session_id, system_prompt=None, model="gpt-3.5-turbo"): | |||||
super().__init__(session_id, system_prompt) | |||||
self.model = model | |||||
self.reset() | |||||
def discard_exceeding(self, max_tokens, cur_tokens=None): | |||||
precise = True | |||||
try: | |||||
cur_tokens = self.calc_tokens() | |||||
except Exception as e: | |||||
precise = False | |||||
if cur_tokens is None: | |||||
raise e | |||||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||||
while cur_tokens > max_tokens: | |||||
if len(self.messages) > 2: | |||||
self.messages.pop(1) | |||||
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant": | |||||
self.messages.pop(1) | |||||
if precise: | |||||
cur_tokens = self.calc_tokens() | |||||
else: | |||||
cur_tokens = cur_tokens - max_tokens | |||||
break | |||||
elif len(self.messages) == 2 and self.messages[1]["role"] == "user": | |||||
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens)) | |||||
break | |||||
else: | |||||
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages))) | |||||
break | |||||
if precise: | |||||
cur_tokens = self.calc_tokens() | |||||
else: | |||||
cur_tokens = cur_tokens - max_tokens | |||||
return cur_tokens | |||||
def calc_tokens(self): | |||||
return num_tokens_from_messages(self.messages, self.model) | |||||
# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |||||
def num_tokens_from_messages(messages, model): | |||||
"""Returns the number of tokens used by a list of messages.""" | |||||
if model in ["wenxin", "xunfei", const.GEMINI]: | |||||
return num_tokens_by_character(messages) | |||||
import tiktoken | |||||
if model in ["gpt-3.5-turbo-0301", "gpt-35-turbo", "gpt-3.5-turbo-1106", "moonshot", const.LINKAI_35]: | |||||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo") | |||||
elif model in ["gpt-4-0314", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0613", "gpt-3.5-turbo-0613", | |||||
"gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613", "gpt-35-turbo-16k", "gpt-4-turbo-preview", | |||||
"gpt-4-1106-preview",const.GPT4_TURBO_PREVIEW, const.GPT4_VISION_PREVIEW, const.GPT4_TURBO_01_25, | |||||
const.GPT_4o, const.GPT_4O_0806, const.GPT_4o_MINI, const.LINKAI_4o, const.LINKAI_4_TURBO]: | |||||
return num_tokens_from_messages(messages, model="gpt-4") | |||||
elif model.startswith("claude-3"): | |||||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo") | |||||
try: | |||||
encoding = tiktoken.encoding_for_model(model) | |||||
except KeyError: | |||||
logger.debug("Warning: model not found. Using cl100k_base encoding.") | |||||
encoding = tiktoken.get_encoding("cl100k_base") | |||||
if model == "gpt-3.5-turbo": | |||||
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n | |||||
tokens_per_name = -1 # if there's a name, the role is omitted | |||||
elif model == "gpt-4": | |||||
tokens_per_message = 3 | |||||
tokens_per_name = 1 | |||||
else: | |||||
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo.") | |||||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo") | |||||
num_tokens = 0 | |||||
for message in messages: | |||||
num_tokens += tokens_per_message | |||||
for key, value in message.items(): | |||||
num_tokens += len(encoding.encode(value)) | |||||
if key == "name": | |||||
num_tokens += tokens_per_name | |||||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> | |||||
return num_tokens | |||||
def num_tokens_by_character(messages): | |||||
"""Returns the number of tokens used by a list of messages.""" | |||||
tokens = 0 | |||||
for msg in messages: | |||||
tokens += len(msg["content"]) | |||||
return tokens |
@@ -1,122 +0,0 @@ | |||||
# encoding:utf-8 | |||||
import time | |||||
import openai | |||||
import openai.error | |||||
from bot.bot import Bot | |||||
from bot.openai.open_ai_image import OpenAIImage | |||||
from bot.openai.open_ai_session import OpenAISession | |||||
from bot.session_manager import SessionManager | |||||
from bridge.context import ContextType | |||||
from bridge.reply import Reply, ReplyType | |||||
from common.log import logger | |||||
from config import conf | |||||
user_session = dict() | |||||
# OpenAI对话模型API (可用) | |||||
class OpenAIBot(Bot, OpenAIImage): | |||||
def __init__(self): | |||||
super().__init__() | |||||
openai.api_key = conf().get("open_ai_api_key") | |||||
if conf().get("open_ai_api_base"): | |||||
openai.api_base = conf().get("open_ai_api_base") | |||||
proxy = conf().get("proxy") | |||||
if proxy: | |||||
openai.proxy = proxy | |||||
self.sessions = SessionManager(OpenAISession, model=conf().get("model") or "text-davinci-003") | |||||
self.args = { | |||||
"model": conf().get("model") or "text-davinci-003", # 对话模型的名称 | |||||
"temperature": conf().get("temperature", 0.9), # 值在[0,1]之间,越大表示回复越具有不确定性 | |||||
"max_tokens": 1200, # 回复最大的字符数 | |||||
"top_p": 1, | |||||
"frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 | |||||
"presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 | |||||
"request_timeout": conf().get("request_timeout", None), # 请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间 | |||||
"timeout": conf().get("request_timeout", None), # 重试超时时间,在这个时间内,将会自动重试 | |||||
"stop": ["\n\n\n"], | |||||
} | |||||
def reply(self, query, context=None): | |||||
# acquire reply content | |||||
if context and context.type: | |||||
if context.type == ContextType.TEXT: | |||||
logger.info("[OPEN_AI] query={}".format(query)) | |||||
session_id = context["session_id"] | |||||
reply = None | |||||
if query == "#清除记忆": | |||||
self.sessions.clear_session(session_id) | |||||
reply = Reply(ReplyType.INFO, "记忆已清除") | |||||
elif query == "#清除所有": | |||||
self.sessions.clear_all_session() | |||||
reply = Reply(ReplyType.INFO, "所有人记忆已清除") | |||||
else: | |||||
session = self.sessions.session_query(query, session_id) | |||||
result = self.reply_text(session) | |||||
total_tokens, completion_tokens, reply_content = ( | |||||
result["total_tokens"], | |||||
result["completion_tokens"], | |||||
result["content"], | |||||
) | |||||
logger.debug( | |||||
"[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(str(session), session_id, reply_content, completion_tokens) | |||||
) | |||||
if total_tokens == 0: | |||||
reply = Reply(ReplyType.ERROR, reply_content) | |||||
else: | |||||
self.sessions.session_reply(reply_content, session_id, total_tokens) | |||||
reply = Reply(ReplyType.TEXT, reply_content) | |||||
return reply | |||||
elif context.type == ContextType.IMAGE_CREATE: | |||||
ok, retstring = self.create_img(query, 0) | |||||
reply = None | |||||
if ok: | |||||
reply = Reply(ReplyType.IMAGE_URL, retstring) | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, retstring) | |||||
return reply | |||||
def reply_text(self, session: OpenAISession, retry_count=0): | |||||
try: | |||||
response = openai.Completion.create(prompt=str(session), **self.args) | |||||
res_content = response.choices[0]["text"].strip().replace("<|endoftext|>", "") | |||||
total_tokens = response["usage"]["total_tokens"] | |||||
completion_tokens = response["usage"]["completion_tokens"] | |||||
logger.info("[OPEN_AI] reply={}".format(res_content)) | |||||
return { | |||||
"total_tokens": total_tokens, | |||||
"completion_tokens": completion_tokens, | |||||
"content": res_content, | |||||
} | |||||
except Exception as e: | |||||
need_retry = retry_count < 2 | |||||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"} | |||||
if isinstance(e, openai.error.RateLimitError): | |||||
logger.warn("[OPEN_AI] RateLimitError: {}".format(e)) | |||||
result["content"] = "提问太快啦,请休息一下再问我吧" | |||||
if need_retry: | |||||
time.sleep(20) | |||||
elif isinstance(e, openai.error.Timeout): | |||||
logger.warn("[OPEN_AI] Timeout: {}".format(e)) | |||||
result["content"] = "我没有收到你的消息" | |||||
if need_retry: | |||||
time.sleep(5) | |||||
elif isinstance(e, openai.error.APIConnectionError): | |||||
logger.warn("[OPEN_AI] APIConnectionError: {}".format(e)) | |||||
need_retry = False | |||||
result["content"] = "我连接不到你的网络" | |||||
else: | |||||
logger.warn("[OPEN_AI] Exception: {}".format(e)) | |||||
need_retry = False | |||||
self.sessions.clear_session(session.session_id) | |||||
if need_retry: | |||||
logger.warn("[OPEN_AI] 第{}次重试".format(retry_count + 1)) | |||||
return self.reply_text(session, retry_count + 1) | |||||
else: | |||||
return result |
@@ -1,43 +0,0 @@ | |||||
import time | |||||
import openai | |||||
import openai.error | |||||
from common.log import logger | |||||
from common.token_bucket import TokenBucket | |||||
from config import conf | |||||
# OPENAI提供的画图接口 | |||||
class OpenAIImage(object): | |||||
def __init__(self): | |||||
openai.api_key = conf().get("open_ai_api_key") | |||||
if conf().get("rate_limit_dalle"): | |||||
self.tb4dalle = TokenBucket(conf().get("rate_limit_dalle", 50)) | |||||
def create_img(self, query, retry_count=0, api_key=None, api_base=None): | |||||
try: | |||||
if conf().get("rate_limit_dalle") and not self.tb4dalle.get_token(): | |||||
return False, "请求太快了,请休息一下再问我吧" | |||||
logger.info("[OPEN_AI] image_query={}".format(query)) | |||||
response = openai.Image.create( | |||||
api_key=api_key, | |||||
prompt=query, # 图片描述 | |||||
n=1, # 每次生成图片的数量 | |||||
model=conf().get("text_to_image") or "dall-e-2", | |||||
# size=conf().get("image_create_size", "256x256"), # 图片大小,可选有 256x256, 512x512, 1024x1024 | |||||
) | |||||
image_url = response["data"][0]["url"] | |||||
logger.info("[OPEN_AI] image_url={}".format(image_url)) | |||||
return True, image_url | |||||
except openai.error.RateLimitError as e: | |||||
logger.warn(e) | |||||
if retry_count < 1: | |||||
time.sleep(5) | |||||
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count + 1)) | |||||
return self.create_img(query, retry_count + 1) | |||||
else: | |||||
return False, "画图出现问题,请休息一下再问我吧" | |||||
except Exception as e: | |||||
logger.exception(e) | |||||
return False, "画图出现问题,请休息一下再问我吧" |
@@ -1,73 +0,0 @@ | |||||
from bot.session_manager import Session | |||||
from common.log import logger | |||||
class OpenAISession(Session): | |||||
def __init__(self, session_id, system_prompt=None, model="text-davinci-003"): | |||||
super().__init__(session_id, system_prompt) | |||||
self.model = model | |||||
self.reset() | |||||
def __str__(self): | |||||
# 构造对话模型的输入 | |||||
""" | |||||
e.g. Q: xxx | |||||
A: xxx | |||||
Q: xxx | |||||
""" | |||||
prompt = "" | |||||
for item in self.messages: | |||||
if item["role"] == "system": | |||||
prompt += item["content"] + "<|endoftext|>\n\n\n" | |||||
elif item["role"] == "user": | |||||
prompt += "Q: " + item["content"] + "\n" | |||||
elif item["role"] == "assistant": | |||||
prompt += "\n\nA: " + item["content"] + "<|endoftext|>\n" | |||||
if len(self.messages) > 0 and self.messages[-1]["role"] == "user": | |||||
prompt += "A: " | |||||
return prompt | |||||
def discard_exceeding(self, max_tokens, cur_tokens=None): | |||||
precise = True | |||||
try: | |||||
cur_tokens = self.calc_tokens() | |||||
except Exception as e: | |||||
precise = False | |||||
if cur_tokens is None: | |||||
raise e | |||||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||||
while cur_tokens > max_tokens: | |||||
if len(self.messages) > 1: | |||||
self.messages.pop(0) | |||||
elif len(self.messages) == 1 and self.messages[0]["role"] == "assistant": | |||||
self.messages.pop(0) | |||||
if precise: | |||||
cur_tokens = self.calc_tokens() | |||||
else: | |||||
cur_tokens = len(str(self)) | |||||
break | |||||
elif len(self.messages) == 1 and self.messages[0]["role"] == "user": | |||||
logger.warn("user question exceed max_tokens. total_tokens={}".format(cur_tokens)) | |||||
break | |||||
else: | |||||
logger.debug("max_tokens={}, total_tokens={}, len(conversation)={}".format(max_tokens, cur_tokens, len(self.messages))) | |||||
break | |||||
if precise: | |||||
cur_tokens = self.calc_tokens() | |||||
else: | |||||
cur_tokens = len(str(self)) | |||||
return cur_tokens | |||||
def calc_tokens(self): | |||||
return num_tokens_from_string(str(self), self.model) | |||||
# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |||||
def num_tokens_from_string(string: str, model: str) -> int: | |||||
"""Returns the number of tokens in a text string.""" | |||||
import tiktoken | |||||
encoding = tiktoken.encoding_for_model(model) | |||||
num_tokens = len(encoding.encode(string, disallowed_special=())) | |||||
return num_tokens |
@@ -1,105 +0,0 @@ | |||||
from common.expired_dict import ExpiredDict | |||||
from common.log import logger | |||||
from config import conf | |||||
import json | |||||
class Session(object): | |||||
def __init__(self, session_id, system_prompt=None): | |||||
self.session_id = session_id | |||||
self.messages = [] | |||||
if system_prompt is None: | |||||
self.system_prompt = conf().get("character_desc", "") | |||||
else: | |||||
self.system_prompt = system_prompt | |||||
# 重置会话 | |||||
def reset(self): | |||||
system_item = {"role": "system", "content": self.system_prompt} | |||||
self.messages = [system_item] | |||||
def set_system_prompt(self, system_prompt): | |||||
self.system_prompt = system_prompt | |||||
self.reset() | |||||
# def add_query(self, query): | |||||
# user_item = {"role": "user", "content": query} | |||||
# self.messages.append(user_item) | |||||
def add_query(self, query): | |||||
try: | |||||
# 判断是否为 JSON 字符串,如果是则转换为 Python 字典 | |||||
json_data = json.loads(query) | |||||
if isinstance(json_data, dict) or isinstance(json_data, list): # 检查是否为字典格式 | |||||
user_item = {"role": "user", "content": json_data} | |||||
else: | |||||
user_item = {"role": "user", "content": query} | |||||
except json.JSONDecodeError: | |||||
# 如果不是 JSON 字符串,直接保存为字符串 | |||||
user_item = {"role": "user", "content": query} | |||||
self.messages.append(user_item) | |||||
def add_reply(self, reply): | |||||
assistant_item = {"role": "assistant", "content": reply} | |||||
self.messages.append(assistant_item) | |||||
def discard_exceeding(self, max_tokens=None, cur_tokens=None): | |||||
raise NotImplementedError | |||||
def calc_tokens(self): | |||||
raise NotImplementedError | |||||
class SessionManager(object): | |||||
def __init__(self, sessioncls, **session_args): | |||||
if conf().get("expires_in_seconds"): | |||||
sessions = ExpiredDict(conf().get("expires_in_seconds")) | |||||
else: | |||||
sessions = dict() | |||||
self.sessions = sessions | |||||
self.sessioncls = sessioncls | |||||
self.session_args = session_args | |||||
def build_session(self, session_id, system_prompt=None): | |||||
""" | |||||
如果session_id不在sessions中,创建一个新的session并添加到sessions中 | |||||
如果system_prompt不会空,会更新session的system_prompt并重置session | |||||
""" | |||||
if session_id is None: | |||||
return self.sessioncls(session_id, system_prompt, **self.session_args) | |||||
if session_id not in self.sessions: | |||||
self.sessions[session_id] = self.sessioncls(session_id, system_prompt, **self.session_args) | |||||
elif system_prompt is not None: # 如果有新的system_prompt,更新并重置session | |||||
self.sessions[session_id].set_system_prompt(system_prompt) | |||||
session = self.sessions[session_id] | |||||
return session | |||||
def session_query(self, query, session_id): | |||||
session = self.build_session(session_id) | |||||
session.add_query(query) | |||||
try: | |||||
max_tokens = conf().get("conversation_max_tokens", 1000) | |||||
total_tokens = session.discard_exceeding(max_tokens, None) | |||||
logger.debug("prompt tokens used={}".format(total_tokens)) | |||||
except Exception as e: | |||||
logger.warning("Exception when counting tokens precisely for prompt: {}".format(str(e))) | |||||
return session | |||||
def session_reply(self, reply, session_id, total_tokens=None): | |||||
session = self.build_session(session_id) | |||||
session.add_reply(reply) | |||||
try: | |||||
max_tokens = conf().get("conversation_max_tokens", 1000) | |||||
tokens_cnt = session.discard_exceeding(max_tokens, total_tokens) | |||||
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt)) | |||||
except Exception as e: | |||||
logger.warning("Exception when counting tokens precisely for session: {}".format(str(e))) | |||||
return session | |||||
def clear_session(self, session_id): | |||||
if session_id in self.sessions: | |||||
del self.sessions[session_id] | |||||
def clear_all_session(self): | |||||
self.sessions.clear() |