|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- from bot.session_manager import Session
- from common.log import logger
-
- """
- e.g. [
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": "Who won the world series in 2020?"},
- {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
- {"role": "user", "content": "Where was it played?"}
- ]
- """
-
-
- class ChatGPTSession(Session):
- def __init__(self, session_id, system_prompt=None, model="gpt-3.5-turbo"):
- super().__init__(session_id, system_prompt)
- self.model = model
- self.reset()
-
- def discard_exceeding(self, max_tokens, cur_tokens=None):
- precise = True
- try:
- cur_tokens = self.calc_tokens()
- except Exception as e:
- precise = False
- if cur_tokens is None:
- raise e
- logger.debug("Exception when counting tokens precisely for query: {}".format(e))
- while cur_tokens > max_tokens:
- if len(self.messages) > 2:
- self.messages.pop(1)
- elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
- self.messages.pop(1)
- if precise:
- cur_tokens = self.calc_tokens()
- else:
- cur_tokens = cur_tokens - max_tokens
- break
- elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
- logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
- break
- else:
- logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages)))
- break
- if precise:
- cur_tokens = self.calc_tokens()
- else:
- cur_tokens = cur_tokens - max_tokens
- return cur_tokens
-
- def calc_tokens(self):
- return num_tokens_from_messages(self.messages, self.model)
-
-
- # refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
- def num_tokens_from_messages(messages, model):
- """Returns the number of tokens used by a list of messages."""
-
- if model in ["wenxin", "xunfei"]:
- return num_tokens_by_character(messages)
-
- import tiktoken
-
- if model in ["gpt-3.5-turbo-0301", "gpt-35-turbo"]:
- return num_tokens_from_messages(messages, model="gpt-3.5-turbo")
- elif model in ["gpt-4-0314", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0613", "gpt-3.5-turbo-0613",
- "gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613", "gpt-35-turbo-16k"]:
- return num_tokens_from_messages(messages, model="gpt-4")
-
- try:
- encoding = tiktoken.encoding_for_model(model)
- except KeyError:
- logger.debug("Warning: model not found. Using cl100k_base encoding.")
- encoding = tiktoken.get_encoding("cl100k_base")
- if model == "gpt-3.5-turbo":
- tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
- tokens_per_name = -1 # if there's a name, the role is omitted
- elif model == "gpt-4":
- tokens_per_message = 3
- tokens_per_name = 1
- else:
- logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo.")
- return num_tokens_from_messages(messages, model="gpt-3.5-turbo")
- num_tokens = 0
- for message in messages:
- num_tokens += tokens_per_message
- for key, value in message.items():
- num_tokens += len(encoding.encode(value))
- if key == "name":
- num_tokens += tokens_per_name
- num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
- return num_tokens
-
-
- def num_tokens_by_character(messages):
- """Returns the number of tokens used by a list of messages."""
- tokens = 0
- for msg in messages:
- tokens += len(msg["content"])
- return tokens
|