|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # encoding:utf-8
-
- import time
-
- import openai
- import openai.error
- from bot.bot import Bot
- from bot.minimax.minimax_session import MinimaxSession
- from bot.session_manager import SessionManager
- from bridge.context import Context, ContextType
- from bridge.reply import Reply, ReplyType
- from common.log import logger
- from config import conf, load_config
- from bot.chatgpt.chat_gpt_session import ChatGPTSession
- import requests
- from common import const
-
-
- # ZhipuAI对话模型API
- class MinimaxBot(Bot):
- def __init__(self):
- super().__init__()
- self.args = {
- "model": conf().get("model") or "abab6.5", # 对话模型的名称
- "temperature": conf().get("temperature", 0.3), # 如果设置,值域须为 [0, 1] 我们推荐 0.3,以达到较合适的效果。
- "top_p": conf().get("top_p", 0.95), # 使用默认值
- }
- self.api_key = conf().get("Minimax_api_key")
- self.group_id = conf().get("Minimax_group_id")
- self.base_url = conf().get("Minimax_base_url", f"https://api.minimax.chat/v1/text/chatcompletion_pro?GroupId={self.group_id}")
- # tokens_to_generate/bot_setting/reply_constraints可自行修改
- self.request_body = {
- "model": self.args["model"],
- "tokens_to_generate": 2048,
- "reply_constraints": {"sender_type": "BOT", "sender_name": "MM智能助理"},
- "messages": [],
- "bot_setting": [
- {
- "bot_name": "MM智能助理",
- "content": "MM智能助理是一款由MiniMax自研的,没有调用其他产品的接口的大型语言模型。MiniMax是一家中国科技公司,一直致力于进行大模型相关的研究。",
- }
- ],
- }
- self.sessions = SessionManager(MinimaxSession, model=const.MiniMax)
-
- def reply(self, query, context: Context = None) -> Reply:
- # acquire reply content
- logger.info("[Minimax_AI] query={}".format(query))
- if context.type == ContextType.TEXT:
- session_id = context["session_id"]
- reply = None
- clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
- if query in clear_memory_commands:
- self.sessions.clear_session(session_id)
- reply = Reply(ReplyType.INFO, "记忆已清除")
- elif query == "#清除所有":
- self.sessions.clear_all_session()
- reply = Reply(ReplyType.INFO, "所有人记忆已清除")
- elif query == "#更新配置":
- load_config()
- reply = Reply(ReplyType.INFO, "配置已更新")
- if reply:
- return reply
- session = self.sessions.session_query(query, session_id)
- logger.debug("[Minimax_AI] session query={}".format(session))
-
- model = context.get("Minimax_model")
- new_args = self.args.copy()
- if model:
- new_args["model"] = model
- # if context.get('stream'):
- # # reply in stream
- # return self.reply_text_stream(query, new_query, session_id)
-
- reply_content = self.reply_text(session, args=new_args)
- logger.debug(
- "[Minimax_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
- session.messages,
- session_id,
- reply_content["content"],
- reply_content["completion_tokens"],
- )
- )
- if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
- reply = Reply(ReplyType.ERROR, reply_content["content"])
- elif reply_content["completion_tokens"] > 0:
- self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
- reply = Reply(ReplyType.TEXT, reply_content["content"])
- else:
- reply = Reply(ReplyType.ERROR, reply_content["content"])
- logger.debug("[Minimax_AI] reply {} used 0 tokens.".format(reply_content))
- return reply
- else:
- reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
- return reply
-
- def reply_text(self, session: MinimaxSession, args=None, retry_count=0) -> dict:
- """
- call openai's ChatCompletion to get the answer
- :param session: a conversation session
- :param session_id: session id
- :param retry_count: retry count
- :return: {}
- """
- try:
- headers = {"Content-Type": "application/json", "Authorization": "Bearer " + self.api_key}
- self.request_body["messages"].extend(session.messages)
- logger.info("[Minimax_AI] request_body={}".format(self.request_body))
- # logger.info("[Minimax_AI] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))
- res = requests.post(self.base_url, headers=headers, json=self.request_body)
-
- # self.request_body["messages"].extend(response.json()["choices"][0]["messages"])
- if res.status_code == 200:
- response = res.json()
- return {
- "total_tokens": response["usage"]["total_tokens"],
- "completion_tokens": response["usage"]["total_tokens"],
- "content": response["reply"],
- }
- else:
- response = res.json()
- error = response.get("error")
- logger.error(f"[Minimax_AI] chat failed, status_code={res.status_code}, " f"msg={error.get('message')}, type={error.get('type')}")
-
- result = {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
- need_retry = False
- if res.status_code >= 500:
- # server error, need retry
- logger.warn(f"[Minimax_AI] do retry, times={retry_count}")
- need_retry = retry_count < 2
- elif res.status_code == 401:
- result["content"] = "授权失败,请检查API Key是否正确"
- elif res.status_code == 429:
- result["content"] = "请求过于频繁,请稍后再试"
- need_retry = retry_count < 2
- else:
- need_retry = False
-
- if need_retry:
- time.sleep(3)
- return self.reply_text(session, args, retry_count + 1)
- else:
- return result
- except Exception as e:
- logger.exception(e)
- need_retry = retry_count < 2
- result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
- if need_retry:
- return self.reply_text(session, args, retry_count + 1)
- else:
- return result
|