Browse Source

refactor: decouple chatgpt session

master
lanvent 1 year ago
parent
commit
0c9753b7cd
3 changed files with 163 additions and 129 deletions
  1. +10
    -129
      bot/chatgpt/chat_gpt_bot.py
  2. +76
    -0
      bot/chatgpt/chat_gpt_session.py
  3. +77
    -0
      bot/session_manager.py

+ 10
- 129
bot/chatgpt/chat_gpt_bot.py View File

@@ -1,7 +1,9 @@
# encoding:utf-8

from bot.bot import Bot
from bot.chatgpt.chat_gpt_session import ChatGPTSession
from bot.openai.open_ai_image import OpenAIImage
from bot.session_manager import Session, SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from config import conf, load_config
@@ -11,7 +13,6 @@ from common.expired_dict import ExpiredDict
import openai
import time


# OpenAI对话模型API (可用)
class ChatGPTBot(Bot,OpenAIImage):
def __init__(self):
@@ -19,7 +20,7 @@ class ChatGPTBot(Bot,OpenAIImage):
if conf().get('open_ai_api_base'):
openai.api_base = conf().get('open_ai_api_base')
proxy = conf().get('proxy')
self.sessions = SessionManager(model= conf().get("model") or "gpt-3.5-turbo")
self.sessions = SessionManager(ChatGPTSession, model= conf().get("model") or "gpt-3.5-turbo")
if proxy:
openai.proxy = proxy
if conf().get('rate_limit_chatgpt'):
@@ -44,19 +45,19 @@ class ChatGPTBot(Bot,OpenAIImage):
reply = Reply(ReplyType.INFO, '配置已更新')
if reply:
return reply
session = self.sessions.build_session_query(query, session_id)
logger.debug("[OPEN_AI] session query={}".format(session))
session = self.sessions.session_query(query, session_id)
logger.debug("[OPEN_AI] session query={}".format(session.messages))

# if context.get('stream'):
# # reply in stream
# return self.reply_text_stream(query, new_query, session_id)

reply_content = self.reply_text(session, session_id, 0)
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session, session_id, reply_content["content"], reply_content["completion_tokens"]))
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session.messages, session_id, reply_content["content"], reply_content["completion_tokens"]))
if reply_content['completion_tokens'] == 0 and len(reply_content['content']) > 0:
reply = Reply(ReplyType.ERROR, reply_content['content'])
elif reply_content["completion_tokens"] > 0:
self.sessions.save_session(reply_content["content"], session_id, reply_content["total_tokens"])
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
reply = Reply(ReplyType.TEXT, reply_content["content"])
else:
reply = Reply(ReplyType.ERROR, reply_content['content'])
@@ -85,7 +86,7 @@ class ChatGPTBot(Bot,OpenAIImage):
"presence_penalty":conf().get('presence_penalty', 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
}

def reply_text(self, session, session_id, retry_count=0) -> dict:
def reply_text(self, session:ChatGPTSession, session_id, retry_count=0) -> dict:
'''
call openai's ChatCompletion to get the answer
:param session: a conversation session
@@ -97,7 +98,7 @@ class ChatGPTBot(Bot,OpenAIImage):
if conf().get('rate_limit_chatgpt') and not self.tb4chatgpt.get_token():
return {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
response = openai.ChatCompletion.create(
messages=session, **self.compose_args()
messages=session.messages, **self.compose_args()
)
# logger.info("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))
return {"total_tokens": response["usage"]["total_tokens"],
@@ -128,7 +129,6 @@ class ChatGPTBot(Bot,OpenAIImage):
return {"completion_tokens": 0, "content": "请再问我一次吧"}



class AzureChatGPTBot(ChatGPTBot):
def __init__(self):
super().__init__()
@@ -139,123 +139,4 @@ class AzureChatGPTBot(ChatGPTBot):
args = super().compose_args()
args["engine"] = args["model"]
del(args["model"])
return args

class SessionManager(object):
def __init__(self, model = "gpt-3.5-turbo-0301"):
if conf().get('expires_in_seconds'):
sessions = ExpiredDict(conf().get('expires_in_seconds'))
else:
sessions = dict()
self.sessions = sessions
self.model = model

def build_session(self, session_id, system_prompt=None):
session = self.sessions.get(session_id, [])
if len(session) == 0:
if system_prompt is None:
system_prompt = conf().get("character_desc", "")
system_item = {'role': 'system', 'content': system_prompt}
session.append(system_item)
self.sessions[session_id] = session
return session

def build_session_query(self, query, session_id):
'''
build query with conversation history
e.g. [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
:param query: query content
:param session_id: session id
:return: query content with conversaction
'''
session = self.build_session(session_id)
user_item = {'role': 'user', 'content': query}
session.append(user_item)
try:
total_tokens = num_tokens_from_messages(session, self.model)
max_tokens = conf().get("conversation_max_tokens", 1000)
total_tokens = self.discard_exceed_conversation(session, max_tokens, total_tokens)
logger.debug("prompt tokens used={}".format(total_tokens))
except Exception as e:
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e)))

return session

def save_session(self, answer, session_id, total_tokens):
max_tokens = conf().get("conversation_max_tokens", 1000)
session = self.sessions.get(session_id)
if session:
# append conversation
gpt_item = {'role': 'assistant', 'content': answer}
session.append(gpt_item)

# discard exceed limit conversation
tokens_cnt = self.discard_exceed_conversation(session, max_tokens, total_tokens)
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt))

def discard_exceed_conversation(self, session, max_tokens, total_tokens):
dec_tokens = int(total_tokens)
# logger.info("prompt tokens used={},max_tokens={}".format(used_tokens,max_tokens))
while dec_tokens > max_tokens:
# pop first conversation
if len(session) > 2:
session.pop(1)
elif len(session) == 2 and session[1]["role"] == "assistant":
session.pop(1)
break
elif len(session) == 2 and session[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(dec_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(sessions)={}".format(max_tokens, dec_tokens, len(session)))
break
try:
cur_tokens = num_tokens_from_messages(session, self.model)
dec_tokens = cur_tokens
except Exception as e:
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
dec_tokens = dec_tokens - max_tokens
return dec_tokens

def clear_session(self, session_id):
self.sessions[session_id] = []

def clear_all_session(self):
self.sessions.clear()

# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, model):
"""Returns the number of tokens used by a list of messages."""
import tiktoken
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
return num_tokens_from_messages(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
return args

+ 76
- 0
bot/chatgpt/chat_gpt_session.py View File

@@ -0,0 +1,76 @@
from bot.session_manager import Session
from common.log import logger
class ChatGPTSession(Session):
def __init__(self, session_id, system_prompt=None, model= "gpt-3.5-turbo"):
super().__init__(session_id, system_prompt)
self.messages = []
self.model = model
self.reset()
def reset(self):
system_item = {'role': 'system', 'content': self.system_prompt}
self.messages = [system_item]

def add_query(self, query):
user_item = {'role': 'user', 'content': query}
self.messages.append(user_item)

def add_reply(self, reply):
assistant_item = {'role': 'assistant', 'content': reply}
self.messages.append(assistant_item)
def discard_exceeding(self, max_tokens, cur_tokens= None):
if cur_tokens is None:
cur_tokens = num_tokens_from_messages(self.messages, self.model)
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
cur_tokens = num_tokens_from_messages(self.messages, self.model)
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages)))
break
try:
cur_tokens = num_tokens_from_messages(self.messages, self.model)
except Exception as e:
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
cur_tokens = cur_tokens - max_tokens
return cur_tokens

# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, model):
"""Returns the number of tokens used by a list of messages."""
import tiktoken
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
return num_tokens_from_messages(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens

+ 77
- 0
bot/session_manager.py View File

@@ -0,0 +1,77 @@
from common.expired_dict import ExpiredDict
from common.log import logger
from config import conf

class Session(object):
def __init__(self, session_id, system_prompt=None):
self.session_id = session_id
if system_prompt is None:
self.system_prompt = conf().get("character_desc", "")
else:
self.system_prompt = system_prompt

# 重置会话
def reset(self):
raise NotImplementedError

def set_system_prompt(self, system_prompt):
self.system_prompt = system_prompt
self.reset()

def add_query(self, query):
raise NotImplementedError

def add_reply(self, reply):
raise NotImplementedError
def discard_exceeding(self, max_tokens=None, cur_tokens=None):
raise NotImplementedError



class SessionManager(object):
def __init__(self, sessioncls, **session_args):
if conf().get('expires_in_seconds'):
sessions = ExpiredDict(conf().get('expires_in_seconds'))
else:
sessions = dict()
self.sessions = sessions
self.sessioncls = sessioncls
self.session_args = session_args

def build_session(self, session_id, system_prompt=None):
if session_id not in self.sessions:
self.sessions[session_id] = self.sessioncls(session_id, system_prompt, **self.session_args)
elif system_prompt is not None: # 如果有新的system_prompt,更新并重置session
self.sessions[session_id].set_system_prompt(system_prompt)
session = self.sessions[session_id]
return session
def session_query(self, query, session_id):
session = self.build_session(session_id)
session.add_query(query)
print(session.messages)
try:
max_tokens = conf().get("conversation_max_tokens", 1000)
total_tokens = session.discard_exceeding(max_tokens, None)
logger.debug("prompt tokens used={}".format(total_tokens))
except Exception as e:
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e)))
return session

def session_reply(self, reply, session_id, total_tokens = None):
session = self.build_session(session_id)
session.add_reply(reply)
try:
max_tokens = conf().get("conversation_max_tokens", 1000)
tokens_cnt = session.discard_exceeding(max_tokens, total_tokens)
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt))
except Exception as e:
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e)))
return session

def clear_session(self, session_id):
del(self.sessions[session_id])

def clear_all_session(self):
self.sessions.clear()

Loading…
Cancel
Save