瀏覽代碼

fix: wenxin token discard bug

master
zhayujie 1 年之前
父節點
當前提交
1171b04e93
共有 2 個檔案被更改,包括 10 行新增45 行删除
  1. +0
    -1
      bot/baidu/baidu_wenxin.py
  2. +10
    -44
      bot/baidu/baidu_wenxin_session.py

+ 0
- 1
bot/baidu/baidu_wenxin.py 查看文件

@@ -2,7 +2,6 @@

import requests, json
from bot.bot import Bot
from bridge.reply import Reply, ReplyType
from bot.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType


+ 10
- 44
bot/baidu/baidu_wenxin_session.py 查看文件

@@ -9,6 +9,7 @@ from common.log import logger
]
"""


class BaiduWenxinSession(Session):
def __init__(self, session_id, system_prompt=None, model="gpt-3.5-turbo"):
super().__init__(session_id, system_prompt)
@@ -17,7 +18,6 @@ class BaiduWenxinSession(Session):
# self.reset()

def discard_exceeding(self, max_tokens, cur_tokens=None):
# pdb.set_trace()
precise = True
try:
cur_tokens = self.calc_tokens()
@@ -27,18 +27,9 @@ class BaiduWenxinSession(Session):
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
if len(self.messages) >= 2:
self.messages.pop(0)
self.messages.pop(0)
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages)))
break
@@ -52,36 +43,11 @@ class BaiduWenxinSession(Session):
return num_tokens_from_messages(self.messages, self.model)


# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, model):
"""Returns the number of tokens used by a list of messages."""
import tiktoken

if model in ["gpt-3.5-turbo-0301", "gpt-35-turbo"]:
return num_tokens_from_messages(messages, model="gpt-3.5-turbo")
elif model in ["gpt-4-0314", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0613", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613", "gpt-35-turbo-16k"]:
return num_tokens_from_messages(messages, model="gpt-4")

try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4":
tokens_per_message = 3
tokens_per_name = 1
else:
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
tokens = 0
for msg in messages:
# 官方token计算规则暂不明确: "大约为 token数为 "中文字 + 其他语种单词数 x 1.3"
# 这里先直接根据字数粗略估算吧,暂不影响正常使用,仅在判断是否丢弃历史会话的时候会有偏差
tokens += len(msg["content"])
return tokens

Loading…
取消
儲存