Преглед на файлове

Add Baidu Wenxin Bot

master
Kevin Li преди 1 година
родител
ревизия
1817a972c6
променени са 6 файла, в които са добавени 201 реда и са изтрити 3 реда
  1. +4
    -0
      .gitignore
  2. +97
    -0
      bot/baidu/baidu_wenxin.py
  3. +87
    -0
      bot/baidu/baidu_wenxin_session.py
  4. +6
    -3
      bot/bot_factory.py
  5. +2
    -0
      bridge/bridge.py
  6. +5
    -0
      config.py

+ 4
- 0
.gitignore Целия файл

@@ -1,6 +1,8 @@
.DS_Store
.idea
.vscode
.venv
.vs
.wechaty/
__pycache__/
venv*
@@ -22,6 +24,8 @@ plugins/**/
!plugins/tool
!plugins/banwords
!plugins/banwords/**/
plugins/banwords/__pycache__
plugins/banwords/lib/__pycache__
!plugins/hello
!plugins/role
!plugins/keyword

+ 97
- 0
bot/baidu/baidu_wenxin.py Целия файл

@@ -0,0 +1,97 @@
# encoding:utf-8

import requests, json
import pdb
from bot.bot import Bot
from bridge.reply import Reply, ReplyType
from bot.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from config import conf
from bot.baidu.baidu_wenxin_session import BaiduWenxinSession

BAIDU_API_KEY = conf().get("baidu_wenxin_api_key")
BAIDU_SECRET_KEY = conf().get("baidu_wenxin_api_key")

class BaiduWenxinBot(Bot):

def __init__(self):
super().__init__()
self.sessions = SessionManager(BaiduWenxinSession, model=conf().get("baidu_wenxin_model") or "eb-instant")

def reply(self, query, context=None):
# acquire reply content
if context and context.type:
if context.type == ContextType.TEXT:
logger.info("[BAIDU] query={}".format(query))
session_id = context["session_id"]
reply = None
if query == "#清除记忆":
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, "记忆已清除")
elif query == "#清除所有":
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
else:
session = self.sessions.session_query(query, session_id)
result = self.reply_text(session)
total_tokens, completion_tokens, reply_content = (
result["total_tokens"],
result["completion_tokens"],
result["content"],
)
logger.debug(
"[BAIDU] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session.messages, session_id, reply_content, completion_tokens)
)

if total_tokens == 0:
reply = Reply(ReplyType.ERROR, reply_content)
else:
self.sessions.session_reply(reply_content, session_id, total_tokens)
reply = Reply(ReplyType.TEXT, reply_content)
return reply
elif context.type == ContextType.IMAGE_CREATE:
ok, retstring = self.create_img(query, 0)
reply = None
if ok:
reply = Reply(ReplyType.IMAGE_URL, retstring)
else:
reply = Reply(ReplyType.ERROR, retstring)
return reply

def reply_text(self, session: BaiduWenxinSession, retry_count=0):
try:
access_token = self.get_access_token()
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/" + session.model + "?access_token=" + access_token
headers = {
'Content-Type': 'application/json'
}
payload = {'messages': session.messages}
response = requests.request("POST", url, headers=headers, data=json.dumps(payload))
response_text = json.loads(response.text)
res_content = response_text["result"]
total_tokens = response_text["usage"]["total_tokens"]
completion_tokens = response_text["usage"]["completion_tokens"]
logger.info("[BAIDU] reply={}".format(res_content))
return {
"total_tokens": total_tokens,
"completion_tokens": completion_tokens,
"content": res_content,
}
except Exception as e:
need_retry = retry_count < 2
logger.warn("[BAIDU] Exception: {}".format(e))
need_retry = False
self.sessions.clear_session(session.session_id)
result = {"completion_tokens": 0, "content": "出错了: {}".format(e)}
return result

def get_access_token(self):
"""
使用 AK,SK 生成鉴权签名(Access Token)
:return: access_token,或是None(如果错误)
"""
url = "https://aip.baidubce.com/oauth/2.0/token"
params = {"grant_type": "client_credentials", "client_id": BAIDU_API_KEY, "client_secret": BAIDU_SECRET_KEY}
return str(requests.post(url, params=params).json().get("access_token"))

+ 87
- 0
bot/baidu/baidu_wenxin_session.py Целия файл

@@ -0,0 +1,87 @@
from bot.session_manager import Session
from common.log import logger

"""
e.g. [
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
"""

class BaiduWenxinSession(Session):
def __init__(self, session_id, system_prompt=None, model="gpt-3.5-turbo"):
super().__init__(session_id, system_prompt)
self.model = model
# 百度文心不支持system prompt
# self.reset()

def discard_exceeding(self, max_tokens, cur_tokens=None):
# pdb.set_trace()
precise = True
try:
cur_tokens = self.calc_tokens()
except Exception as e:
precise = False
if cur_tokens is None:
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages)))
break
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
return cur_tokens

def calc_tokens(self):
return num_tokens_from_messages(self.messages, self.model)


# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, model):
"""Returns the number of tokens used by a list of messages."""
import tiktoken

if model in ["gpt-3.5-turbo-0301", "gpt-35-turbo"]:
return num_tokens_from_messages(messages, model="gpt-3.5-turbo")
elif model in ["gpt-4-0314", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0613", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613", "gpt-35-turbo-16k"]:
return num_tokens_from_messages(messages, model="gpt-4")

try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4":
tokens_per_message = 3
tokens_per_name = 1
else:
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens

+ 6
- 3
bot/bot_factory.py Целия файл

@@ -11,10 +11,13 @@ def create_bot(bot_type):
:return: bot instance
"""
if bot_type == const.BAIDU:
# Baidu Unit对话接口
from bot.baidu.baidu_unit_bot import BaiduUnitBot
# 替换Baidu Unit为Baidu文心千帆对话接口
# from bot.baidu.baidu_unit_bot import BaiduUnitBot
# return BaiduUnitBot()

return BaiduUnitBot()
from bot.baidu.baidu_wenxin import BaiduWenxinBot

return BaiduWenxinBot()

elif bot_type == const.CHATGPT:
# ChatGPT 网页端web接口


+ 2
- 0
bridge/bridge.py Целия файл

@@ -23,6 +23,8 @@ class Bridge(object):
self.btype["chat"] = const.OPEN_AI
if conf().get("use_azure_chatgpt", False):
self.btype["chat"] = const.CHATGPTONAZURE
if conf().get("use_baidu_wenxin", False):
self.btype["chat"] = const.BAIDU
if conf().get("use_linkai") and conf().get("linkai_api_key"):
self.btype["chat"] = const.LINKAI
self.bots = {}


+ 5
- 0
config.py Целия файл

@@ -19,6 +19,7 @@ available_setting = {
"model": "gpt-3.5-turbo",
"use_azure_chatgpt": False, # 是否使用azure的chatgpt
"azure_deployment_id": "", # azure 模型部署名称
"use_baidu_wenxin": False, # 是否使用baidu文心一言,优先级次于azure
# Bot触发配置
"single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
@@ -50,6 +51,10 @@ available_setting = {
"presence_penalty": 0,
"request_timeout": 60, # chatgpt请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间
"timeout": 120, # chatgpt重试超时时间,在这个时间内,将会自动重试
# Baidu 文心一言参数
"baidu_wenxin_model": "eb-instant", # 默认使用ERNIE-Bot-turbo模型
"baidu_wenxin_api_key": "", # Baidu api key
"baidu_wenxin_secret_key": "", # Baidu secret key
# 语音设置
"speech_recognition": False, # 是否开启语音识别
"group_speech_recognition": False, # 是否开启群组语音识别


Loading…
Отказ
Запис