支持ZhipuAI GLM系列模型和画图代码master
@@ -1,13 +1,13 @@ | |||
# 简介 | |||
> 本项目是基于大模型的智能对话机器人,支持微信、企业微信、公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。 | |||
> 本项目是基于大模型的智能对话机器人,支持微信、企业微信、公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI/ZhipuAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。 | |||
最新版本支持的功能如下: | |||
- [x] **多端部署:** 有多种部署方式可选择且功能完备,目前已支持个人微信、微信公众号和、企业微信、飞书、钉钉等部署方式 | |||
- [x] **基础对话:** 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4, claude, Gemini, 文心一言, 讯飞星火, 通义千问 | |||
- [x] **基础对话:** 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4, claude, Gemini, 文心一言, 讯飞星火, 通义千问,ChatGLM | |||
- [x] **语音能力:** 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型 | |||
- [x] **图像能力:** 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, vision模型 | |||
- [x] **图像能力:** 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, CogView-3, vision模型 | |||
- [x] **丰富插件:** 支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件 | |||
- [x] **知识库:** 通过上传知识库文件自定义专属机器人,可作为数字分身、智能客服、私域助手使用,基于 [LinkAI](https://link-ai.tech) 实现 | |||
@@ -52,8 +52,9 @@ def create_bot(bot_type): | |||
from bot.gemini.google_gemini_bot import GoogleGeminiBot | |||
return GoogleGeminiBot() | |||
elif bot_type == const.CHATGLM: | |||
from bot.zhipu.chat_glm_bot import ChatGLMBot | |||
return ChatGLMBot() | |||
elif bot_type == const.ZHIPU_AI: | |||
from bot.zhipuai.zhipuai_bot import ZHIPUAIBot | |||
return ZHIPUAIBot() | |||
raise RuntimeError |
@@ -0,0 +1,29 @@ | |||
from common.log import logger | |||
from config import conf | |||
# ZhipuAI提供的画图接口 | |||
class ZhipuAIImage(object): | |||
def __init__(self): | |||
from zhipuai import ZhipuAI | |||
self.client = ZhipuAI(api_key=conf().get("zhipu_ai_api_key")) | |||
def create_img(self, query, retry_count=0, api_key=None, api_base=None): | |||
try: | |||
if conf().get("rate_limit_dalle"): | |||
return False, "请求太快了,请休息一下再问我吧" | |||
logger.info("[ZHIPU_AI] image_query={}".format(query)) | |||
response = self.client.images.generations( | |||
prompt=query, | |||
n=1, # 每次生成图片的数量 | |||
model=conf().get("text_to_image") or "cogview-3", | |||
size=conf().get("image_create_size", "1024x1024"), # 图片大小,可选有 256x256, 512x512, 1024x1024 | |||
quality="standard", | |||
) | |||
image_url = response.data[0].url | |||
logger.info("[ZHIPU_AI] image_url={}".format(image_url)) | |||
return True, image_url | |||
except Exception as e: | |||
logger.exception(e) | |||
return False, "画图出现问题,请休息一下再问我吧" |
@@ -0,0 +1,51 @@ | |||
from bot.session_manager import Session | |||
from common.log import logger | |||
class ZhipuAISession(Session): | |||
def __init__(self, session_id, system_prompt=None, model="glm-4"): | |||
super().__init__(session_id, system_prompt) | |||
self.model = model | |||
self.reset() | |||
def discard_exceeding(self, max_tokens, cur_tokens=None): | |||
precise = True | |||
try: | |||
cur_tokens = self.calc_tokens() | |||
except Exception as e: | |||
precise = False | |||
if cur_tokens is None: | |||
raise e | |||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||
while cur_tokens > max_tokens: | |||
if len(self.messages) > 2: | |||
self.messages.pop(1) | |||
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant": | |||
self.messages.pop(1) | |||
if precise: | |||
cur_tokens = self.calc_tokens() | |||
else: | |||
cur_tokens = cur_tokens - max_tokens | |||
break | |||
elif len(self.messages) == 2 and self.messages[1]["role"] == "user": | |||
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens)) | |||
break | |||
else: | |||
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, | |||
len(self.messages))) | |||
break | |||
if precise: | |||
cur_tokens = self.calc_tokens() | |||
else: | |||
cur_tokens = cur_tokens - max_tokens | |||
return cur_tokens | |||
def calc_tokens(self): | |||
return num_tokens_from_messages(self.messages, self.model) | |||
def num_tokens_from_messages(messages, model): | |||
tokens = 0 | |||
for msg in messages: | |||
tokens += len(msg["content"]) | |||
return tokens |
@@ -0,0 +1,149 @@ | |||
# encoding:utf-8 | |||
import time | |||
import openai | |||
import openai.error | |||
from bot.bot import Bot | |||
from bot.zhipuai.zhipu_ai_session import ZhipuAISession | |||
from bot.zhipuai.zhipu_ai_image import ZhipuAIImage | |||
from bot.session_manager import SessionManager | |||
from bridge.context import ContextType | |||
from bridge.reply import Reply, ReplyType | |||
from common.log import logger | |||
from config import conf, load_config | |||
from zhipuai import ZhipuAI | |||
# ZhipuAI对话模型API | |||
class ZHIPUAIBot(Bot, ZhipuAIImage): | |||
def __init__(self): | |||
super().__init__() | |||
self.sessions = SessionManager(ZhipuAISession, model=conf().get("model") or "ZHIPU_AI") | |||
self.args = { | |||
"model": conf().get("model") or "glm-4", # 对话模型的名称 | |||
"temperature": conf().get("temperature", 0.9), # 值在(0,1)之间(智谱AI 的温度不能取 0 或者 1) | |||
"top_p": conf().get("top_p", 0.7), # 值在(0,1)之间(智谱AI 的 top_p 不能取 0 或者 1) | |||
} | |||
self.client = ZhipuAI(api_key=conf().get("zhipu_ai_api_key")) | |||
def reply(self, query, context=None): | |||
# acquire reply content | |||
if context.type == ContextType.TEXT: | |||
logger.info("[ZHIPU_AI] query={}".format(query)) | |||
session_id = context["session_id"] | |||
reply = None | |||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"]) | |||
if query in clear_memory_commands: | |||
self.sessions.clear_session(session_id) | |||
reply = Reply(ReplyType.INFO, "记忆已清除") | |||
elif query == "#清除所有": | |||
self.sessions.clear_all_session() | |||
reply = Reply(ReplyType.INFO, "所有人记忆已清除") | |||
elif query == "#更新配置": | |||
load_config() | |||
reply = Reply(ReplyType.INFO, "配置已更新") | |||
if reply: | |||
return reply | |||
session = self.sessions.session_query(query, session_id) | |||
logger.debug("[ZHIPU_AI] session query={}".format(session.messages)) | |||
api_key = context.get("openai_api_key") or openai.api_key | |||
model = context.get("gpt_model") | |||
new_args = None | |||
if model: | |||
new_args = self.args.copy() | |||
new_args["model"] = model | |||
# if context.get('stream'): | |||
# # reply in stream | |||
# return self.reply_text_stream(query, new_query, session_id) | |||
reply_content = self.reply_text(session, api_key, args=new_args) | |||
logger.debug( | |||
"[ZHIPU_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format( | |||
session.messages, | |||
session_id, | |||
reply_content["content"], | |||
reply_content["completion_tokens"], | |||
) | |||
) | |||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0: | |||
reply = Reply(ReplyType.ERROR, reply_content["content"]) | |||
elif reply_content["completion_tokens"] > 0: | |||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"]) | |||
reply = Reply(ReplyType.TEXT, reply_content["content"]) | |||
else: | |||
reply = Reply(ReplyType.ERROR, reply_content["content"]) | |||
logger.debug("[ZHIPU_AI] reply {} used 0 tokens.".format(reply_content)) | |||
return reply | |||
elif context.type == ContextType.IMAGE_CREATE: | |||
ok, retstring = self.create_img(query, 0) | |||
reply = None | |||
if ok: | |||
reply = Reply(ReplyType.IMAGE_URL, retstring) | |||
else: | |||
reply = Reply(ReplyType.ERROR, retstring) | |||
return reply | |||
else: | |||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type)) | |||
return reply | |||
def reply_text(self, session: ZhipuAISession, api_key=None, args=None, retry_count=0) -> dict: | |||
""" | |||
call openai's ChatCompletion to get the answer | |||
:param session: a conversation session | |||
:param session_id: session id | |||
:param retry_count: retry count | |||
:return: {} | |||
""" | |||
try: | |||
# if conf().get("rate_limit_chatgpt") and not self.tb4chatgpt.get_token(): | |||
# raise openai.error.RateLimitError("RateLimitError: rate limit exceeded") | |||
# if api_key == None, the default openai.api_key will be used | |||
if args is None: | |||
args = self.args | |||
# response = openai.ChatCompletion.create(api_key=api_key, messages=session.messages, **args) | |||
response = self.client.chat.completions.create(messages=session.messages, **args) | |||
# logger.debug("[ZHIPU_AI] response={}".format(response)) | |||
# logger.info("[ZHIPU_AI] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"])) | |||
return { | |||
"total_tokens": response.usage.total_tokens, | |||
"completion_tokens": response.usage.completion_tokens, | |||
"content": response.choices[0].message.content, | |||
} | |||
except Exception as e: | |||
need_retry = retry_count < 2 | |||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"} | |||
if isinstance(e, openai.error.RateLimitError): | |||
logger.warn("[ZHIPU_AI] RateLimitError: {}".format(e)) | |||
result["content"] = "提问太快啦,请休息一下再问我吧" | |||
if need_retry: | |||
time.sleep(20) | |||
elif isinstance(e, openai.error.Timeout): | |||
logger.warn("[ZHIPU_AI] Timeout: {}".format(e)) | |||
result["content"] = "我没有收到你的消息" | |||
if need_retry: | |||
time.sleep(5) | |||
elif isinstance(e, openai.error.APIError): | |||
logger.warn("[ZHIPU_AI] Bad Gateway: {}".format(e)) | |||
result["content"] = "请再问我一次" | |||
if need_retry: | |||
time.sleep(10) | |||
elif isinstance(e, openai.error.APIConnectionError): | |||
logger.warn("[ZHIPU_AI] APIConnectionError: {}".format(e)) | |||
result["content"] = "我连接不到你的网络" | |||
if need_retry: | |||
time.sleep(5) | |||
else: | |||
logger.exception("[ZHIPU_AI] Exception: {}".format(e), e) | |||
need_retry = False | |||
self.sessions.clear_session(session.session_id) | |||
if need_retry: | |||
logger.warn("[ZHIPU_AI] 第{}次重试".format(retry_count + 1)) | |||
return self.reply_text(session, api_key, args, retry_count + 1) | |||
else: | |||
return result |
@@ -31,8 +31,8 @@ class Bridge(object): | |||
self.btype["chat"] = const.QWEN | |||
if model_type in [const.GEMINI]: | |||
self.btype["chat"] = const.GEMINI | |||
if model_type in [const.CHATGLM]: | |||
self.btype["chat"] = const.CHATGLM | |||
if model_type in [const.ZHIPU_AI]: | |||
self.btype["chat"] = const.ZHIPU_AI | |||
if conf().get("use_linkai") and conf().get("linkai_api_key"): | |||
self.btype["chat"] = const.LINKAI | |||
@@ -8,7 +8,8 @@ LINKAI = "linkai" | |||
CLAUDEAI = "claude" | |||
QWEN = "qwen" | |||
GEMINI = "gemini" | |||
CHATGLM = "chatglm" | |||
ZHIPU_AI = "glm-4" | |||
# model | |||
GPT35 = "gpt-3.5-turbo" | |||
@@ -20,7 +21,7 @@ TTS_1 = "tts-1" | |||
TTS_1_HD = "tts-1-hd" | |||
MODEL_LIST = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "wenxin", "wenxin-4", "xunfei", "claude", "gpt-4-turbo", | |||
"gpt-4-turbo-preview", "gpt-4-1106-preview", GPT4_TURBO_PREVIEW, QWEN, GEMINI, CHATGLM] | |||
"gpt-4-turbo-preview", "gpt-4-1106-preview", GPT4_TURBO_PREVIEW, QWEN, GEMINI, ZHIPU_AI] | |||
# channel | |||
FEISHU = "feishu" | |||
@@ -150,15 +150,14 @@ available_setting = { | |||
"use_global_plugin_config": False, | |||
"max_media_send_count": 3, # 单次最大发送媒体资源的个数 | |||
"media_send_interval": 1, # 发送图片的事件间隔,单位秒 | |||
# 智谱AI 平台配置 | |||
"zhipu_ai_api_key": "", | |||
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4", | |||
# LinkAI平台配置 | |||
"use_linkai": False, | |||
"linkai_api_key": "", | |||
"linkai_app_code": "", | |||
"linkai_api_base": "https://api.link-ai.chat", # linkAI服务地址,若国内无法访问或延迟较高可改为 https://api.link-ai.tech | |||
# # 智谱AI | |||
"zhipu_ai_api_key": "", | |||
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4", | |||
} | |||
@@ -38,5 +38,5 @@ linkai | |||
# dingtalk | |||
dingtalk_stream | |||
# zhipu | |||
zhipuai | |||
# zhipuai | |||
zhipuai>=2.0.1 |