@@ -1,13 +1,13 @@ | |||||
# 简介 | # 简介 | ||||
> 本项目是基于大模型的智能对话机器人,支持微信、企业微信、公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。 | |||||
> 本项目是基于大模型的智能对话机器人,支持微信、企业微信、公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI/ZhipuAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。 | |||||
最新版本支持的功能如下: | 最新版本支持的功能如下: | ||||
- [x] **多端部署:** 有多种部署方式可选择且功能完备,目前已支持个人微信、微信公众号和、企业微信、飞书、钉钉等部署方式 | - [x] **多端部署:** 有多种部署方式可选择且功能完备,目前已支持个人微信、微信公众号和、企业微信、飞书、钉钉等部署方式 | ||||
- [x] **基础对话:** 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4, claude, Gemini, 文心一言, 讯飞星火, 通义千问 | |||||
- [x] **基础对话:** 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4, claude, Gemini, 文心一言, 讯飞星火, 通义千问,ChatGLM | |||||
- [x] **语音能力:** 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型 | - [x] **语音能力:** 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型 | ||||
- [x] **图像能力:** 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, vision模型 | |||||
- [x] **图像能力:** 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, CogView-3, vision模型 | |||||
- [x] **丰富插件:** 支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件 | - [x] **丰富插件:** 支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件 | ||||
- [x] **知识库:** 通过上传知识库文件自定义专属机器人,可作为数字分身、智能客服、私域助手使用,基于 [LinkAI](https://link-ai.tech) 实现 | - [x] **知识库:** 通过上传知识库文件自定义专属机器人,可作为数字分身、智能客服、私域助手使用,基于 [LinkAI](https://link-ai.tech) 实现 | ||||
@@ -52,8 +52,9 @@ def create_bot(bot_type): | |||||
from bot.gemini.google_gemini_bot import GoogleGeminiBot | from bot.gemini.google_gemini_bot import GoogleGeminiBot | ||||
return GoogleGeminiBot() | return GoogleGeminiBot() | ||||
elif bot_type == const.CHATGLM: | |||||
from bot.zhipu.chat_glm_bot import ChatGLMBot | |||||
return ChatGLMBot() | |||||
elif bot_type == const.ZHIPU_AI: | |||||
from bot.zhipuai.zhipuai_bot import ZHIPUAIBot | |||||
return ZHIPUAIBot() | |||||
raise RuntimeError | raise RuntimeError |
@@ -0,0 +1,29 @@ | |||||
from common.log import logger | |||||
from config import conf | |||||
# ZhipuAI提供的画图接口 | |||||
class ZhipuAIImage(object): | |||||
def __init__(self): | |||||
from zhipuai import ZhipuAI | |||||
self.client = ZhipuAI(api_key=conf().get("zhipu_ai_api_key")) | |||||
def create_img(self, query, retry_count=0, api_key=None, api_base=None): | |||||
try: | |||||
if conf().get("rate_limit_dalle"): | |||||
return False, "请求太快了,请休息一下再问我吧" | |||||
logger.info("[ZHIPU_AI] image_query={}".format(query)) | |||||
response = self.client.images.generations( | |||||
prompt=query, | |||||
n=1, # 每次生成图片的数量 | |||||
model=conf().get("text_to_image") or "cogview-3", | |||||
size=conf().get("image_create_size", "1024x1024"), # 图片大小,可选有 256x256, 512x512, 1024x1024 | |||||
quality="standard", | |||||
) | |||||
image_url = response.data[0].url | |||||
logger.info("[ZHIPU_AI] image_url={}".format(image_url)) | |||||
return True, image_url | |||||
except Exception as e: | |||||
logger.exception(e) | |||||
return False, "画图出现问题,请休息一下再问我吧" |
@@ -0,0 +1,51 @@ | |||||
from bot.session_manager import Session | |||||
from common.log import logger | |||||
class ZhipuAISession(Session): | |||||
def __init__(self, session_id, system_prompt=None, model="glm-4"): | |||||
super().__init__(session_id, system_prompt) | |||||
self.model = model | |||||
self.reset() | |||||
def discard_exceeding(self, max_tokens, cur_tokens=None): | |||||
precise = True | |||||
try: | |||||
cur_tokens = self.calc_tokens() | |||||
except Exception as e: | |||||
precise = False | |||||
if cur_tokens is None: | |||||
raise e | |||||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||||
while cur_tokens > max_tokens: | |||||
if len(self.messages) > 2: | |||||
self.messages.pop(1) | |||||
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant": | |||||
self.messages.pop(1) | |||||
if precise: | |||||
cur_tokens = self.calc_tokens() | |||||
else: | |||||
cur_tokens = cur_tokens - max_tokens | |||||
break | |||||
elif len(self.messages) == 2 and self.messages[1]["role"] == "user": | |||||
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens)) | |||||
break | |||||
else: | |||||
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, | |||||
len(self.messages))) | |||||
break | |||||
if precise: | |||||
cur_tokens = self.calc_tokens() | |||||
else: | |||||
cur_tokens = cur_tokens - max_tokens | |||||
return cur_tokens | |||||
def calc_tokens(self): | |||||
return num_tokens_from_messages(self.messages, self.model) | |||||
def num_tokens_from_messages(messages, model): | |||||
tokens = 0 | |||||
for msg in messages: | |||||
tokens += len(msg["content"]) | |||||
return tokens |
@@ -0,0 +1,149 @@ | |||||
# encoding:utf-8 | |||||
import time | |||||
import openai | |||||
import openai.error | |||||
from bot.bot import Bot | |||||
from bot.zhipuai.zhipu_ai_session import ZhipuAISession | |||||
from bot.zhipuai.zhipu_ai_image import ZhipuAIImage | |||||
from bot.session_manager import SessionManager | |||||
from bridge.context import ContextType | |||||
from bridge.reply import Reply, ReplyType | |||||
from common.log import logger | |||||
from config import conf, load_config | |||||
from zhipuai import ZhipuAI | |||||
# ZhipuAI对话模型API | |||||
class ZHIPUAIBot(Bot, ZhipuAIImage): | |||||
def __init__(self): | |||||
super().__init__() | |||||
self.sessions = SessionManager(ZhipuAISession, model=conf().get("model") or "ZHIPU_AI") | |||||
self.args = { | |||||
"model": conf().get("model") or "glm-4", # 对话模型的名称 | |||||
"temperature": conf().get("temperature", 0.9), # 值在(0,1)之间(智谱AI 的温度不能取 0 或者 1) | |||||
"top_p": conf().get("top_p", 0.7), # 值在(0,1)之间(智谱AI 的 top_p 不能取 0 或者 1) | |||||
} | |||||
self.client = ZhipuAI(api_key=conf().get("zhipu_ai_api_key")) | |||||
def reply(self, query, context=None): | |||||
# acquire reply content | |||||
if context.type == ContextType.TEXT: | |||||
logger.info("[ZHIPU_AI] query={}".format(query)) | |||||
session_id = context["session_id"] | |||||
reply = None | |||||
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"]) | |||||
if query in clear_memory_commands: | |||||
self.sessions.clear_session(session_id) | |||||
reply = Reply(ReplyType.INFO, "记忆已清除") | |||||
elif query == "#清除所有": | |||||
self.sessions.clear_all_session() | |||||
reply = Reply(ReplyType.INFO, "所有人记忆已清除") | |||||
elif query == "#更新配置": | |||||
load_config() | |||||
reply = Reply(ReplyType.INFO, "配置已更新") | |||||
if reply: | |||||
return reply | |||||
session = self.sessions.session_query(query, session_id) | |||||
logger.debug("[ZHIPU_AI] session query={}".format(session.messages)) | |||||
api_key = context.get("openai_api_key") or openai.api_key | |||||
model = context.get("gpt_model") | |||||
new_args = None | |||||
if model: | |||||
new_args = self.args.copy() | |||||
new_args["model"] = model | |||||
# if context.get('stream'): | |||||
# # reply in stream | |||||
# return self.reply_text_stream(query, new_query, session_id) | |||||
reply_content = self.reply_text(session, api_key, args=new_args) | |||||
logger.debug( | |||||
"[ZHIPU_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format( | |||||
session.messages, | |||||
session_id, | |||||
reply_content["content"], | |||||
reply_content["completion_tokens"], | |||||
) | |||||
) | |||||
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0: | |||||
reply = Reply(ReplyType.ERROR, reply_content["content"]) | |||||
elif reply_content["completion_tokens"] > 0: | |||||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"]) | |||||
reply = Reply(ReplyType.TEXT, reply_content["content"]) | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, reply_content["content"]) | |||||
logger.debug("[ZHIPU_AI] reply {} used 0 tokens.".format(reply_content)) | |||||
return reply | |||||
elif context.type == ContextType.IMAGE_CREATE: | |||||
ok, retstring = self.create_img(query, 0) | |||||
reply = None | |||||
if ok: | |||||
reply = Reply(ReplyType.IMAGE_URL, retstring) | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, retstring) | |||||
return reply | |||||
else: | |||||
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type)) | |||||
return reply | |||||
def reply_text(self, session: ZhipuAISession, api_key=None, args=None, retry_count=0) -> dict: | |||||
""" | |||||
call openai's ChatCompletion to get the answer | |||||
:param session: a conversation session | |||||
:param session_id: session id | |||||
:param retry_count: retry count | |||||
:return: {} | |||||
""" | |||||
try: | |||||
# if conf().get("rate_limit_chatgpt") and not self.tb4chatgpt.get_token(): | |||||
# raise openai.error.RateLimitError("RateLimitError: rate limit exceeded") | |||||
# if api_key == None, the default openai.api_key will be used | |||||
if args is None: | |||||
args = self.args | |||||
# response = openai.ChatCompletion.create(api_key=api_key, messages=session.messages, **args) | |||||
response = self.client.chat.completions.create(messages=session.messages, **args) | |||||
# logger.debug("[ZHIPU_AI] response={}".format(response)) | |||||
# logger.info("[ZHIPU_AI] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"])) | |||||
return { | |||||
"total_tokens": response.usage.total_tokens, | |||||
"completion_tokens": response.usage.completion_tokens, | |||||
"content": response.choices[0].message.content, | |||||
} | |||||
except Exception as e: | |||||
need_retry = retry_count < 2 | |||||
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"} | |||||
if isinstance(e, openai.error.RateLimitError): | |||||
logger.warn("[ZHIPU_AI] RateLimitError: {}".format(e)) | |||||
result["content"] = "提问太快啦,请休息一下再问我吧" | |||||
if need_retry: | |||||
time.sleep(20) | |||||
elif isinstance(e, openai.error.Timeout): | |||||
logger.warn("[ZHIPU_AI] Timeout: {}".format(e)) | |||||
result["content"] = "我没有收到你的消息" | |||||
if need_retry: | |||||
time.sleep(5) | |||||
elif isinstance(e, openai.error.APIError): | |||||
logger.warn("[ZHIPU_AI] Bad Gateway: {}".format(e)) | |||||
result["content"] = "请再问我一次" | |||||
if need_retry: | |||||
time.sleep(10) | |||||
elif isinstance(e, openai.error.APIConnectionError): | |||||
logger.warn("[ZHIPU_AI] APIConnectionError: {}".format(e)) | |||||
result["content"] = "我连接不到你的网络" | |||||
if need_retry: | |||||
time.sleep(5) | |||||
else: | |||||
logger.exception("[ZHIPU_AI] Exception: {}".format(e), e) | |||||
need_retry = False | |||||
self.sessions.clear_session(session.session_id) | |||||
if need_retry: | |||||
logger.warn("[ZHIPU_AI] 第{}次重试".format(retry_count + 1)) | |||||
return self.reply_text(session, api_key, args, retry_count + 1) | |||||
else: | |||||
return result |
@@ -31,8 +31,8 @@ class Bridge(object): | |||||
self.btype["chat"] = const.QWEN | self.btype["chat"] = const.QWEN | ||||
if model_type in [const.GEMINI]: | if model_type in [const.GEMINI]: | ||||
self.btype["chat"] = const.GEMINI | self.btype["chat"] = const.GEMINI | ||||
if model_type in [const.CHATGLM]: | |||||
self.btype["chat"] = const.CHATGLM | |||||
if model_type in [const.ZHIPU_AI]: | |||||
self.btype["chat"] = const.ZHIPU_AI | |||||
if conf().get("use_linkai") and conf().get("linkai_api_key"): | if conf().get("use_linkai") and conf().get("linkai_api_key"): | ||||
self.btype["chat"] = const.LINKAI | self.btype["chat"] = const.LINKAI | ||||
@@ -8,7 +8,8 @@ LINKAI = "linkai" | |||||
CLAUDEAI = "claude" | CLAUDEAI = "claude" | ||||
QWEN = "qwen" | QWEN = "qwen" | ||||
GEMINI = "gemini" | GEMINI = "gemini" | ||||
CHATGLM = "chatglm" | |||||
ZHIPU_AI = "glm-4" | |||||
# model | # model | ||||
GPT35 = "gpt-3.5-turbo" | GPT35 = "gpt-3.5-turbo" | ||||
@@ -20,7 +21,7 @@ TTS_1 = "tts-1" | |||||
TTS_1_HD = "tts-1-hd" | TTS_1_HD = "tts-1-hd" | ||||
MODEL_LIST = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "wenxin", "wenxin-4", "xunfei", "claude", "gpt-4-turbo", | MODEL_LIST = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "wenxin", "wenxin-4", "xunfei", "claude", "gpt-4-turbo", | ||||
"gpt-4-turbo-preview", "gpt-4-1106-preview", GPT4_TURBO_PREVIEW, QWEN, GEMINI, CHATGLM] | |||||
"gpt-4-turbo-preview", "gpt-4-1106-preview", GPT4_TURBO_PREVIEW, QWEN, GEMINI, ZHIPU_AI] | |||||
# channel | # channel | ||||
FEISHU = "feishu" | FEISHU = "feishu" | ||||
@@ -150,15 +150,14 @@ available_setting = { | |||||
"use_global_plugin_config": False, | "use_global_plugin_config": False, | ||||
"max_media_send_count": 3, # 单次最大发送媒体资源的个数 | "max_media_send_count": 3, # 单次最大发送媒体资源的个数 | ||||
"media_send_interval": 1, # 发送图片的事件间隔,单位秒 | "media_send_interval": 1, # 发送图片的事件间隔,单位秒 | ||||
# 智谱AI 平台配置 | |||||
"zhipu_ai_api_key": "", | |||||
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4", | |||||
# LinkAI平台配置 | # LinkAI平台配置 | ||||
"use_linkai": False, | "use_linkai": False, | ||||
"linkai_api_key": "", | "linkai_api_key": "", | ||||
"linkai_app_code": "", | "linkai_app_code": "", | ||||
"linkai_api_base": "https://api.link-ai.chat", # linkAI服务地址,若国内无法访问或延迟较高可改为 https://api.link-ai.tech | "linkai_api_base": "https://api.link-ai.chat", # linkAI服务地址,若国内无法访问或延迟较高可改为 https://api.link-ai.tech | ||||
# # 智谱AI | |||||
"zhipu_ai_api_key": "", | |||||
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4", | |||||
} | } | ||||
@@ -38,5 +38,5 @@ linkai | |||||
# dingtalk | # dingtalk | ||||
dingtalk_stream | dingtalk_stream | ||||
# zhipu | |||||
zhipuai | |||||
# zhipuai | |||||
zhipuai>=2.0.1 |