Quellcode durchsuchen

feat: support gpt-3.5 api

master
ubuntu vor 1 Jahr
Ursprung
Commit
48900dfbc4
3 geänderte Dateien mit 118 neuen und 499 gelöschten Zeilen
  1. +1
    -1
      .gitignore
  2. +116
    -497
      bot/chatgpt/chat_gpt_bot.py
  3. +1
    -1
      bridge/bridge.py

+ 1
- 1
.gitignore Datei anzeigen

@@ -5,4 +5,4 @@ venv*
*.pyc
config.json
QR.png
nohub.out
nohup.out

+ 116
- 497
bot/chatgpt/chat_gpt_bot.py Datei anzeigen

@@ -1,511 +1,130 @@
"""
A simple wrapper for the official ChatGPT API
"""
import argparse
import json
import os
import sys
from datetime import date

import openai
import tiktoken
# encoding:utf-8

from bot.bot import Bot
from config import conf
from common.log import logger
import openai
import time

ENGINE = os.environ.get("GPT_ENGINE") or "text-chat-davinci-002-20221122"

ENCODER = tiktoken.get_encoding("gpt2")


def get_max_tokens(prompt: str) -> int:
"""
Get the max tokens for a prompt
"""
return 4000 - len(ENCODER.encode(prompt))


# ['text-chat-davinci-002-20221122']
class Chatbot:
"""
Official ChatGPT API
"""

def __init__(self, api_key: str, buffer: int = None) -> None:
"""
Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys)
"""
openai.api_key = api_key or os.environ.get("OPENAI_API_KEY")
self.conversations = Conversation()
self.prompt = Prompt(buffer=buffer)

def _get_completion(
self,
prompt: str,
temperature: float = 0.5,
stream: bool = False,
):
"""
Get the completion function
"""
return openai.Completion.create(
engine=ENGINE,
prompt=prompt,
temperature=temperature,
max_tokens=get_max_tokens(prompt),
stop=["\n\n\n"],
stream=stream,
)

def _process_completion(
self,
user_request: str,
completion: dict,
conversation_id: str = None,
user: str = "User",
) -> dict:
if completion.get("choices") is None:
raise Exception("ChatGPT API returned no choices")
if len(completion["choices"]) == 0:
raise Exception("ChatGPT API returned no choices")
if completion["choices"][0].get("text") is None:
raise Exception("ChatGPT API returned no text")
completion["choices"][0]["text"] = completion["choices"][0]["text"].rstrip(
"<|im_end|>",
)
# Add to chat history
self.prompt.add_to_history(
user_request,
completion["choices"][0]["text"],
user=user,
)
if conversation_id is not None:
self.save_conversation(conversation_id)
return completion

def _process_completion_stream(
self,
user_request: str,
completion: dict,
conversation_id: str = None,
user: str = "User",
) -> str:
full_response = ""
for response in completion:
if response.get("choices") is None:
raise Exception("ChatGPT API returned no choices")
if len(response["choices"]) == 0:
raise Exception("ChatGPT API returned no choices")
if response["choices"][0].get("finish_details") is not None:
break
if response["choices"][0].get("text") is None:
raise Exception("ChatGPT API returned no text")
if response["choices"][0]["text"] == "<|im_end|>":
break
yield response["choices"][0]["text"]
full_response += response["choices"][0]["text"]

# Add to chat history
self.prompt.add_to_history(user_request, full_response, user)
if conversation_id is not None:
self.save_conversation(conversation_id)

def ask(
self,
user_request: str,
temperature: float = 0.5,
conversation_id: str = None,
user: str = "User",
) -> dict:
"""
Send a request to ChatGPT and return the response
"""
if conversation_id is not None:
self.load_conversation(conversation_id)
completion = self._get_completion(
self.prompt.construct_prompt(user_request, user=user),
temperature,
)
return self._process_completion(user_request, completion, user=user)

def ask_stream(
self,
user_request: str,
temperature: float = 0.5,
conversation_id: str = None,
user: str = "User",
) -> str:
"""
Send a request to ChatGPT and yield the response
"""
if conversation_id is not None:
self.load_conversation(conversation_id)
prompt = self.prompt.construct_prompt(user_request, user=user)
return self._process_completion_stream(
user_request=user_request,
completion=self._get_completion(prompt, temperature, stream=True),
user=user,
)

def make_conversation(self, conversation_id: str) -> None:
"""
Make a conversation
"""
self.conversations.add_conversation(conversation_id, [])

def rollback(self, num: int) -> None:
"""
Rollback chat history num times
"""
for _ in range(num):
self.prompt.chat_history.pop()

def reset(self) -> None:
"""
Reset chat history
"""
self.prompt.chat_history = []

def load_conversation(self, conversation_id) -> None:
"""
Load a conversation from the conversation history
"""
if conversation_id not in self.conversations.conversations:
# Create a new conversation
self.make_conversation(conversation_id)
self.prompt.chat_history = self.conversations.get_conversation(conversation_id)

def save_conversation(self, conversation_id) -> None:
"""
Save a conversation to the conversation history
"""
self.conversations.add_conversation(conversation_id, self.prompt.chat_history)


class AsyncChatbot(Chatbot):
"""
Official ChatGPT API (async)
"""

async def _get_completion(
self,
prompt: str,
temperature: float = 0.5,
stream: bool = False,
):
"""
Get the completion function
"""
return openai.Completion.acreate(
engine=ENGINE,
prompt=prompt,
temperature=temperature,
max_tokens=get_max_tokens(prompt),
stop=["\n\n\n"],
stream=stream,
)

async def ask(
self,
user_request: str,
temperature: float = 0.5,
user: str = "User",
) -> dict:
"""
Same as Chatbot.ask but async
}
"""
completion = await self._get_completion(
self.prompt.construct_prompt(user_request, user=user),
temperature,
)
return self._process_completion(user_request, completion, user=user)

async def ask_stream(
self,
user_request: str,
temperature: float = 0.5,
user: str = "User",
) -> str:
"""
Same as Chatbot.ask_stream but async
"""
prompt = self.prompt.construct_prompt(user_request, user=user)
return self._process_completion_stream(
user_request=user_request,
completion=await self._get_completion(prompt, temperature, stream=True),
user=user,
)


class Prompt:
"""
Prompt class with methods to construct prompt
"""

def __init__(self, buffer: int = None) -> None:
"""
Initialize prompt with base prompt
"""
self.base_prompt = (
os.environ.get("CUSTOM_BASE_PROMPT")
or "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally. Do not answer as the user. Current date: "
+ str(date.today())
+ "\n\n"
+ "User: Hello\n"
+ "ChatGPT: Hello! How can I help you today? <|im_end|>\n\n\n"
)
# Track chat history
self.chat_history: list = []
self.buffer = buffer

def add_to_chat_history(self, chat: str) -> None:
"""
Add chat to chat history for next prompt
"""
self.chat_history.append(chat)

def add_to_history(
self,
user_request: str,
response: str,
user: str = "User",
) -> None:
"""
Add request/response to chat history for next prompt
"""
self.add_to_chat_history(
user
+ ": "
+ user_request
+ "\n\n\n"
+ "ChatGPT: "
+ response
+ "<|im_end|>\n",
)

def history(self, custom_history: list = None) -> str:
"""
Return chat history
"""
return "\n".join(custom_history or self.chat_history)

def construct_prompt(
self,
new_prompt: str,
custom_history: list = None,
user: str = "User",
) -> str:
"""
Construct prompt based on chat history and request
"""
prompt = (
self.base_prompt
+ self.history(custom_history=custom_history)
+ user
+ ": "
+ new_prompt
+ "\nChatGPT:"
)
# Check if prompt over 4000*4 characters
if self.buffer is not None:
max_tokens = 4000 - self.buffer
else:
max_tokens = 3200
if len(ENCODER.encode(prompt)) > max_tokens:
# Remove oldest chat
if len(self.chat_history) == 0:
return prompt
self.chat_history.pop(0)
# Construct prompt again
prompt = self.construct_prompt(new_prompt, custom_history, user)
return prompt


class Conversation:
"""
For handling multiple conversations
"""

def __init__(self) -> None:
self.conversations = {}

def add_conversation(self, key: str, history: list) -> None:
"""
Adds a history list to the conversations dict with the id as the key
"""
self.conversations[key] = history

def get_conversation(self, key: str) -> list:
"""
Retrieves the history list from the conversations dict with the id as the key
"""
return self.conversations[key]

def remove_conversation(self, key: str) -> None:
"""
Removes the history list from the conversations dict with the id as the key
"""
del self.conversations[key]

def __str__(self) -> str:
"""
Creates a JSON string of the conversations
"""
return json.dumps(self.conversations)

def save(self, file: str) -> None:
"""
Saves the conversations to a JSON file
"""
with open(file, "w", encoding="utf-8") as f:
f.write(str(self))

def load(self, file: str) -> None:
"""
Loads the conversations from a JSON file
"""
with open(file, encoding="utf-8") as f:
self.conversations = json.loads(f.read())

user_session = dict()

def main():
print(
"""
ChatGPT - A command-line interface to OpenAI's ChatGPT (https://chat.openai.com/chat)
Repo: github.com/acheong08/ChatGPT
""",
)
print("Type '!help' to show a full list of commands")
print("Press enter twice to submit your question.\n")
# OpenAI对话模型API (可用)
class ChatGPTBot(Bot):
def __init__(self):
openai.api_key = conf().get('open_ai_api_key')

def get_input(prompt):
"""
Multi-line input function
"""
# Display the prompt
print(prompt, end="")
def reply(self, query, context=None):
# acquire reply content
if not context or not context.get('type') or context.get('type') == 'TEXT':
logger.info("[OPEN_AI] query={}".format(query))
from_user_id = context['from_user_id']
if query == '#清除记忆':
Session.clear_session(from_user_id)
return '记忆已清除'

# Initialize an empty list to store the input lines
lines = []
new_query = Session.build_session_query(query, from_user_id)
logger.debug("[OPEN_AI] session query={}".format(new_query))

# Read lines of input until the user enters an empty line
while True:
line = input()
if line == "":
break
lines.append(line)
# if context.get('stream'):
# # reply in stream
# return self.reply_text_stream(query, new_query, from_user_id)

# Join the lines, separated by newlines, and store the result
user_input = "\n".join(lines)
reply_content = self.reply_text(new_query, from_user_id, 0)
logger.debug("[OPEN_AI] new_query={}, user={}, reply_cont={}".format(new_query, from_user_id, reply_content))
if reply_content:
Session.save_session(query, reply_content, from_user_id)
return reply_content

# Return the input
return user_input
elif context.get('type', None) == 'IMAGE_CREATE':
return self.create_img(query, 0)

def chatbot_commands(cmd: str) -> bool:
"""
Handle chatbot commands
"""
if cmd == "!help":
print(
"""
!help - Display this message
!rollback - Rollback chat history
!reset - Reset chat history
!prompt - Show current prompt
!save_c <conversation_name> - Save history to a conversation
!load_c <conversation_name> - Load history from a conversation
!save_f <file_name> - Save all conversations to a file
!load_f <file_name> - Load all conversations from a file
!exit - Quit chat
""",
def reply_text(self, query, user_id, retry_count=0):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo", # 对话模型的名称
messages=query,
temperature=0.9, # 值在[0,1]之间,越大表示回复越具有不确定性
max_tokens=1200, # 回复最大的字符数
top_p=1,
frequency_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
presence_penalty=0.0, # [-2,2]之间,该值越大则更倾向于产生不同的内容
)
elif cmd == "!exit":
exit()
elif cmd == "!rollback":
chatbot.rollback(1)
elif cmd == "!reset":
chatbot.reset()
elif cmd == "!prompt":
print(chatbot.prompt.construct_prompt(""))
elif cmd.startswith("!save_c"):
chatbot.save_conversation(cmd.split(" ")[1])
elif cmd.startswith("!load_c"):
chatbot.load_conversation(cmd.split(" ")[1])
elif cmd.startswith("!save_f"):
chatbot.conversations.save(cmd.split(" ")[1])
elif cmd.startswith("!load_f"):
chatbot.conversations.load(cmd.split(" ")[1])
else:
return False
return True

# Get API key from command line
parser = argparse.ArgumentParser()
parser.add_argument(
"--api_key",
type=str,
required=True,
help="OpenAI API key",
)
parser.add_argument(
"--stream",
action="store_true",
help="Stream response",
)
parser.add_argument(
"--temperature",
type=float,
default=0.5,
help="Temperature for response",
)
args = parser.parse_args()
# Initialize chatbot
chatbot = Chatbot(api_key=args.api_key)
# Start chat
while True:
# res_content = response.choices[0]['text'].strip().replace('<|endoftext|>', '')
logger.info(response.choices[0]['message']['content'])
# log.info("[OPEN_AI] reply={}".format(res_content))
return response.choices[0]['message']['content']
except openai.error.RateLimitError as e:
# rate limit exception
logger.warn(e)
if retry_count < 1:
time.sleep(5)
logger.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1))
return self.reply_text(query, user_id, retry_count+1)
else:
return "提问太快啦,请休息一下再问我吧"
except Exception as e:
# unknown exception
logger.exception(e)
Session.clear_session(user_id)
return "请再问我一次吧"

def create_img(self, query, retry_count=0):
try:
prompt = get_input("\nUser:\n")
except KeyboardInterrupt:
print("\nExiting...")
sys.exit()
if prompt.startswith("!"):
if chatbot_commands(prompt):
continue
if not args.stream:
response = chatbot.ask(prompt, temperature=args.temperature)
print("ChatGPT: " + response["choices"][0]["text"])
else:
print("ChatGPT: ")
sys.stdout.flush()
for response in chatbot.ask_stream(prompt, temperature=args.temperature):
print(response, end="")
sys.stdout.flush()
print()


def Singleton(cls):
instance = {}

def _singleton_wrapper(*args, **kargs):
if cls not in instance:
instance[cls] = cls(*args, **kargs)
return instance[cls]

return _singleton_wrapper


@Singleton
class ChatGPTBot(Bot):

def __init__(self):
print("create")
self.bot = Chatbot(conf().get('open_ai_api_key'))

def reply(self, query, context=None):
if not context or not context.get('type') or context.get('type') == 'TEXT':
if len(query) < 10 and "reset" in query:
self.bot.reset()
return "reset OK"
return self.bot.ask(query)["choices"][0]["text"]
logger.info("[OPEN_AI] image_query={}".format(query))
response = openai.Image.create(
prompt=query, #图片描述
n=1, #每次生成图片的数量
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
)
image_url = response['data'][0]['url']
logger.info("[OPEN_AI] image_url={}".format(image_url))
return image_url
except openai.error.RateLimitError as e:
logger.warn(e)
if retry_count < 1:
time.sleep(5)
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
return self.reply_text(query, retry_count+1)
else:
return "提问太快啦,请休息一下再问我吧"
except Exception as e:
logger.exception(e)
return None

class Session(object):
@staticmethod
def build_session_query(query, user_id):
'''
build query with conversation history
e.g. [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
:param query: query content
:param user_id: from user id
:return: query content with conversaction
'''
session = user_session.get(user_id, [])
if len(session) == 0:
system_prompt = conf().get("character_desc", "")
system_item = {'role': 'system', 'content': system_prompt}
session.append(system_item)
user_session[user_id] = session
user_item = {'role': 'user', 'content': query}
session.append(user_item)
return session

@staticmethod
def save_session(query, answer, user_id):
session = user_session.get(user_id)
if session:
# append conversation
gpt_item = {'role': 'assistant', 'content': answer}
session.append(gpt_item)

@staticmethod
def clear_session(user_id):
user_session[user_id] = []


+ 1
- 1
bridge/bridge.py Datei anzeigen

@@ -6,4 +6,4 @@ class Bridge(object):
pass

def fetch_reply_content(self, query, context):
return bot_factory.create_bot("openAI").reply(query, context)
return bot_factory.create_bot("chatGPT").reply(query, context)

Laden…
Abbrechen
Speichern