|
|
@@ -57,25 +57,25 @@ def num_tokens_from_messages(messages, model): |
|
|
|
"""Returns the number of tokens used by a list of messages.""" |
|
|
|
import tiktoken |
|
|
|
|
|
|
|
if model == "gpt-3.5-turbo" or model == "gpt-35-turbo": |
|
|
|
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") |
|
|
|
elif model == "gpt-4": |
|
|
|
return num_tokens_from_messages(messages, model="gpt-4-0314") |
|
|
|
if model in ["gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613", "gpt-35-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-16k-0613"]: |
|
|
|
return num_tokens_from_messages(messages, model="gpt-3.5-turbo") |
|
|
|
elif model in ["gpt-4-0314", "gpt-4-0613", "gpt-4-32k", "gpt-4-32k-0613"]: |
|
|
|
return num_tokens_from_messages(messages, model="gpt-4") |
|
|
|
|
|
|
|
try: |
|
|
|
encoding = tiktoken.encoding_for_model(model) |
|
|
|
except KeyError: |
|
|
|
logger.debug("Warning: model not found. Using cl100k_base encoding.") |
|
|
|
encoding = tiktoken.get_encoding("cl100k_base") |
|
|
|
if model == "gpt-3.5-turbo-0301": |
|
|
|
if model == "gpt-3.5-turbo": |
|
|
|
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n |
|
|
|
tokens_per_name = -1 # if there's a name, the role is omitted |
|
|
|
elif model == "gpt-4-0314": |
|
|
|
elif model == "gpt-4": |
|
|
|
tokens_per_message = 3 |
|
|
|
tokens_per_name = 1 |
|
|
|
else: |
|
|
|
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.") |
|
|
|
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") |
|
|
|
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo.") |
|
|
|
return num_tokens_from_messages(messages, model="gpt-3.5-turbo") |
|
|
|
num_tokens = 0 |
|
|
|
for message in messages: |
|
|
|
num_tokens += tokens_per_message |
|
|
|