소스 검색

支持ZhipuAI GLM系列模型和画图代码

master
zR 10 달 전
부모
커밋
d6fdf8ca2a
9개의 변경된 파일248개의 추가작업 그리고 4개의 파일을 삭제
  1. +3
    -3
      README.md
  2. +4
    -0
      bot/bot_factory.py
  3. +29
    -0
      bot/zhipuai/zhipu_ai_image.py
  4. +51
    -0
      bot/zhipuai/zhipu_ai_session.py
  5. +149
    -0
      bot/zhipuai/zhipuai_bot.py
  6. +2
    -0
      bridge/bridge.py
  7. +2
    -1
      common/const.py
  8. +5
    -0
      config.py
  9. +3
    -0
      requirements-optional.txt

+ 3
- 3
README.md 파일 보기

@@ -1,13 +1,13 @@
# 简介

> 本项目是基于大模型的智能对话机器人,支持微信、企业微信、公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。
> 本项目是基于大模型的智能对话机器人,支持微信、企业微信、公众号、飞书、钉钉接入,可选择GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/LinkAI/ZhipuAI,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源,支持基于自有知识库定制企业AI应用。

最新版本支持的功能如下:

- [x] **多端部署:** 有多种部署方式可选择且功能完备,目前已支持个人微信、微信公众号和、企业微信、飞书、钉钉等部署方式
- [x] **基础对话:** 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4, claude, Gemini, 文心一言, 讯飞星火, 通义千问
- [x] **基础对话:** 私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT-3.5, GPT-4, claude, Gemini, 文心一言, 讯飞星火, 通义千问,ChatGLM
- [x] **语音能力:** 可识别语音消息,通过文字或语音回复,支持 azure, baidu, google, openai(whisper/tts) 等多种语音模型
- [x] **图像能力:** 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, vision模型
- [x] **图像能力:** 支持图片生成、图片识别、图生图(如照片修复),可选择 Dall-E-3, stable diffusion, replicate, midjourney, CogView-3, vision模型
- [x] **丰富插件:** 支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结、文档总结和对话、联网搜索等插件
- [x] **知识库:** 通过上传知识库文件自定义专属机器人,可作为数字分身、智能客服、私域助手使用,基于 [LinkAI](https://link-ai.tech) 实现



+ 4
- 0
bot/bot_factory.py 파일 보기

@@ -52,4 +52,8 @@ def create_bot(bot_type):
from bot.gemini.google_gemini_bot import GoogleGeminiBot
return GoogleGeminiBot()

elif bot_type == const.ZHIPU_AI:
from bot.zhipuai.zhipuai_bot import ZHIPUAIBot
return ZHIPUAIBot()

raise RuntimeError

+ 29
- 0
bot/zhipuai/zhipu_ai_image.py 파일 보기

@@ -0,0 +1,29 @@
from common.log import logger
from config import conf


# ZhipuAI提供的画图接口

class ZhipuAIImage(object):
def __init__(self):
from zhipuai import ZhipuAI
self.client = ZhipuAI(api_key=conf().get("zhipu_ai_api_key"))

def create_img(self, query, retry_count=0, api_key=None, api_base=None):
try:
if conf().get("rate_limit_dalle"):
return False, "请求太快了,请休息一下再问我吧"
logger.info("[ZHIPU_AI] image_query={}".format(query))
response = self.client.images.generations(
prompt=query,
n=1, # 每次生成图片的数量
model=conf().get("text_to_image") or "cogview-3",
size=conf().get("image_create_size", "1024x1024"), # 图片大小,可选有 256x256, 512x512, 1024x1024
quality="standard",
)
image_url = response.data[0].url
logger.info("[ZHIPU_AI] image_url={}".format(image_url))
return True, image_url
except Exception as e:
logger.exception(e)
return False, "画图出现问题,请休息一下再问我吧"

+ 51
- 0
bot/zhipuai/zhipu_ai_session.py 파일 보기

@@ -0,0 +1,51 @@
from bot.session_manager import Session
from common.log import logger


class ZhipuAISession(Session):
def __init__(self, session_id, system_prompt=None, model="glm-4"):
super().__init__(session_id, system_prompt)
self.model = model
self.reset()

def discard_exceeding(self, max_tokens, cur_tokens=None):
precise = True
try:
cur_tokens = self.calc_tokens()
except Exception as e:
precise = False
if cur_tokens is None:
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens,
len(self.messages)))
break
if precise:
cur_tokens = self.calc_tokens()
else:
cur_tokens = cur_tokens - max_tokens
return cur_tokens

def calc_tokens(self):
return num_tokens_from_messages(self.messages, self.model)


def num_tokens_from_messages(messages, model):
tokens = 0
for msg in messages:
tokens += len(msg["content"])
return tokens

+ 149
- 0
bot/zhipuai/zhipuai_bot.py 파일 보기

@@ -0,0 +1,149 @@
# encoding:utf-8

import time

import openai
import openai.error
from bot.bot import Bot
from bot.zhipuai.zhipu_ai_session import ZhipuAISession
from bot.zhipuai.zhipu_ai_image import ZhipuAIImage
from bot.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from common.log import logger
from config import conf, load_config
from zhipuai import ZhipuAI


# ZhipuAI对话模型API
class ZHIPUAIBot(Bot, ZhipuAIImage):
def __init__(self):
super().__init__()
self.sessions = SessionManager(ZhipuAISession, model=conf().get("model") or "ZHIPU_AI")
self.args = {
"model": "glm-4", # 对话模型的名称,可选择 glm-3.5-turbo
"temperature": conf().get("temperature", 0.9), # 值在(0,1)之间(智谱AI 的温度不能取 0 或者 1)
"top_p": conf().get("top_p", 0.7),
}
self.client = ZhipuAI(api_key=conf().get("zhipu_ai_api_key"))

def reply(self, query, context=None):
# acquire reply content
if context.type == ContextType.TEXT:
logger.info("[ZHIPU_AI] query={}".format(query))

session_id = context["session_id"]
reply = None
clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
if query in clear_memory_commands:
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, "记忆已清除")
elif query == "#清除所有":
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, "所有人记忆已清除")
elif query == "#更新配置":
load_config()
reply = Reply(ReplyType.INFO, "配置已更新")
if reply:
return reply
session = self.sessions.session_query(query, session_id)
logger.debug("[ZHIPU_AI] session query={}".format(session.messages))

api_key = context.get("openai_api_key") or openai.api_key
model = context.get("gpt_model")
new_args = None
if model:
new_args = self.args.copy()
new_args["model"] = model
# if context.get('stream'):
# # reply in stream
# return self.reply_text_stream(query, new_query, session_id)

reply_content = self.reply_text(session, api_key, args=new_args)
logger.debug(
"[ZHIPU_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
session.messages,
session_id,
reply_content["content"],
reply_content["completion_tokens"],
)
)
if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
reply = Reply(ReplyType.ERROR, reply_content["content"])
elif reply_content["completion_tokens"] > 0:
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
reply = Reply(ReplyType.TEXT, reply_content["content"])
else:
reply = Reply(ReplyType.ERROR, reply_content["content"])
logger.debug("[ZHIPU_AI] reply {} used 0 tokens.".format(reply_content))
return reply
elif context.type == ContextType.IMAGE_CREATE:
ok, retstring = self.create_img(query, 0)
reply = None
if ok:
reply = Reply(ReplyType.IMAGE_URL, retstring)
else:
reply = Reply(ReplyType.ERROR, retstring)
return reply

else:
reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
return reply

def reply_text(self, session: ZhipuAISession, api_key=None, args=None, retry_count=0) -> dict:
"""
call openai's ChatCompletion to get the answer
:param session: a conversation session
:param session_id: session id
:param retry_count: retry count
:return: {}
"""
try:
# if conf().get("rate_limit_chatgpt") and not self.tb4chatgpt.get_token():
# raise openai.error.RateLimitError("RateLimitError: rate limit exceeded")
# if api_key == None, the default openai.api_key will be used
if args is None:
args = self.args
# response = openai.ChatCompletion.create(api_key=api_key, messages=session.messages, **args)
response = self.client.chat.completions.create(messages=session.messages, **args)
# logger.debug("[ZHIPU_AI] response={}".format(response))
# logger.info("[ZHIPU_AI] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))

return {
"total_tokens": response.usage.total_tokens,
"completion_tokens": response.usage.completion_tokens,
"content": response.choices[0].message.content,
}
except Exception as e:
need_retry = retry_count < 2
result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
if isinstance(e, openai.error.RateLimitError):
logger.warn("[ZHIPU_AI] RateLimitError: {}".format(e))
result["content"] = "提问太快啦,请休息一下再问我吧"
if need_retry:
time.sleep(20)
elif isinstance(e, openai.error.Timeout):
logger.warn("[ZHIPU_AI] Timeout: {}".format(e))
result["content"] = "我没有收到你的消息"
if need_retry:
time.sleep(5)
elif isinstance(e, openai.error.APIError):
logger.warn("[ZHIPU_AI] Bad Gateway: {}".format(e))
result["content"] = "请再问我一次"
if need_retry:
time.sleep(10)
elif isinstance(e, openai.error.APIConnectionError):
logger.warn("[ZHIPU_AI] APIConnectionError: {}".format(e))
result["content"] = "我连接不到你的网络"
if need_retry:
time.sleep(5)
else:
logger.exception("[ZHIPU_AI] Exception: {}".format(e), e)
need_retry = False
self.sessions.clear_session(session.session_id)

if need_retry:
logger.warn("[ZHIPU_AI] 第{}次重试".format(retry_count + 1))
return self.reply_text(session, api_key, args, retry_count + 1)
else:
return result

+ 2
- 0
bridge/bridge.py 파일 보기

@@ -31,6 +31,8 @@ class Bridge(object):
self.btype["chat"] = const.QWEN
if model_type in [const.GEMINI]:
self.btype["chat"] = const.GEMINI
if model_type in [const.ZHIPU_AI]:
self.btype["chat"] = const.ZHIPU_AI

if conf().get("use_linkai") and conf().get("linkai_api_key"):
self.btype["chat"] = const.LINKAI


+ 2
- 1
common/const.py 파일 보기

@@ -8,6 +8,7 @@ LINKAI = "linkai"
CLAUDEAI = "claude"
QWEN = "qwen"
GEMINI = "gemini"
ZHIPU_AI = "glm-4"

# model
GPT35 = "gpt-3.5-turbo"
@@ -19,7 +20,7 @@ TTS_1 = "tts-1"
TTS_1_HD = "tts-1-hd"

MODEL_LIST = ["gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "wenxin", "wenxin-4", "xunfei", "claude", "gpt-4-turbo",
"gpt-4-turbo-preview", "gpt-4-1106-preview", GPT4_TURBO_PREVIEW, QWEN, GEMINI]
"gpt-4-turbo-preview", "gpt-4-1106-preview", GPT4_TURBO_PREVIEW, QWEN, GEMINI, ZHIPU_AI]

# channel
FEISHU = "feishu"


+ 5
- 0
config.py 파일 보기

@@ -155,6 +155,11 @@ available_setting = {
"linkai_api_key": "",
"linkai_app_code": "",
"linkai_api_base": "https://api.link-ai.chat", # linkAI服务地址,若国内无法访问或延迟较高可改为 https://api.link-ai.tech

# 智谱AI 平台配置
"zhipu_ai_api_key": "",
"zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4",

}




+ 3
- 0
requirements-optional.txt 파일 보기

@@ -37,3 +37,6 @@ linkai

# dingtalk
dingtalk_stream

# zhipuai
zhipuai>=2.0.1

Loading…
취소
저장