refactor and support plugins for OpenAIBotmaster
@@ -1,6 +1,9 @@ | |||
# encoding:utf-8 | |||
from bot.bot import Bot | |||
from bot.chatgpt.chat_gpt_session import ChatGPTSession | |||
from bot.openai.open_ai_image import OpenAIImage | |||
from bot.session_manager import Session, SessionManager | |||
from bridge.context import ContextType | |||
from bridge.reply import Reply, ReplyType | |||
from config import conf, load_config | |||
@@ -10,21 +13,20 @@ from common.expired_dict import ExpiredDict | |||
import openai | |||
import time | |||
# OpenAI对话模型API (可用) | |||
class ChatGPTBot(Bot): | |||
class ChatGPTBot(Bot,OpenAIImage): | |||
def __init__(self): | |||
super().__init__() | |||
openai.api_key = conf().get('open_ai_api_key') | |||
if conf().get('open_ai_api_base'): | |||
openai.api_base = conf().get('open_ai_api_base') | |||
proxy = conf().get('proxy') | |||
self.sessions = SessionManager(model= conf().get("model") or "gpt-3.5-turbo") | |||
if proxy: | |||
openai.proxy = proxy | |||
if conf().get('rate_limit_chatgpt'): | |||
self.tb4chatgpt = TokenBucket(conf().get('rate_limit_chatgpt', 20)) | |||
if conf().get('rate_limit_dalle'): | |||
self.tb4dalle = TokenBucket(conf().get('rate_limit_dalle', 50)) | |||
self.sessions = SessionManager(ChatGPTSession, model= conf().get("model") or "gpt-3.5-turbo") | |||
def reply(self, query, context=None): | |||
# acquire reply content | |||
@@ -45,19 +47,19 @@ class ChatGPTBot(Bot): | |||
reply = Reply(ReplyType.INFO, '配置已更新') | |||
if reply: | |||
return reply | |||
session = self.sessions.build_session_query(query, session_id) | |||
logger.debug("[OPEN_AI] session query={}".format(session)) | |||
session = self.sessions.session_query(query, session_id) | |||
logger.debug("[OPEN_AI] session query={}".format(session.messages)) | |||
# if context.get('stream'): | |||
# # reply in stream | |||
# return self.reply_text_stream(query, new_query, session_id) | |||
reply_content = self.reply_text(session, session_id, 0) | |||
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session, session_id, reply_content["content"], reply_content["completion_tokens"])) | |||
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session.messages, session_id, reply_content["content"], reply_content["completion_tokens"])) | |||
if reply_content['completion_tokens'] == 0 and len(reply_content['content']) > 0: | |||
reply = Reply(ReplyType.ERROR, reply_content['content']) | |||
elif reply_content["completion_tokens"] > 0: | |||
self.sessions.save_session(reply_content["content"], session_id, reply_content["total_tokens"]) | |||
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"]) | |||
reply = Reply(ReplyType.TEXT, reply_content["content"]) | |||
else: | |||
reply = Reply(ReplyType.ERROR, reply_content['content']) | |||
@@ -86,7 +88,7 @@ class ChatGPTBot(Bot): | |||
"presence_penalty":conf().get('presence_penalty', 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 | |||
} | |||
def reply_text(self, session, session_id, retry_count=0) -> dict: | |||
def reply_text(self, session:ChatGPTSession, session_id, retry_count=0) -> dict: | |||
''' | |||
call openai's ChatCompletion to get the answer | |||
:param session: a conversation session | |||
@@ -98,7 +100,7 @@ class ChatGPTBot(Bot): | |||
if conf().get('rate_limit_chatgpt') and not self.tb4chatgpt.get_token(): | |||
return {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"} | |||
response = openai.ChatCompletion.create( | |||
messages=session, **self.compose_args() | |||
messages=session.messages, **self.compose_args() | |||
) | |||
# logger.info("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"])) | |||
return {"total_tokens": response["usage"]["total_tokens"], | |||
@@ -128,31 +130,6 @@ class ChatGPTBot(Bot): | |||
self.sessions.clear_session(session_id) | |||
return {"completion_tokens": 0, "content": "请再问我一次吧"} | |||
def create_img(self, query, retry_count=0): | |||
try: | |||
if conf().get('rate_limit_dalle') and not self.tb4dalle.get_token(): | |||
return False, "请求太快了,请休息一下再问我吧" | |||
logger.info("[OPEN_AI] image_query={}".format(query)) | |||
response = openai.Image.create( | |||
prompt=query, #图片描述 | |||
n=1, #每次生成图片的数量 | |||
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024 | |||
) | |||
image_url = response['data'][0]['url'] | |||
logger.info("[OPEN_AI] image_url={}".format(image_url)) | |||
return True, image_url | |||
except openai.error.RateLimitError as e: | |||
logger.warn(e) | |||
if retry_count < 1: | |||
time.sleep(5) | |||
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1)) | |||
return self.create_img(query, retry_count+1) | |||
else: | |||
return False, "提问太快啦,请休息一下再问我吧" | |||
except Exception as e: | |||
logger.exception(e) | |||
return False, str(e) | |||
class AzureChatGPTBot(ChatGPTBot): | |||
def __init__(self): | |||
@@ -164,123 +141,4 @@ class AzureChatGPTBot(ChatGPTBot): | |||
args = super().compose_args() | |||
args["engine"] = args["model"] | |||
del(args["model"]) | |||
return args | |||
class SessionManager(object): | |||
def __init__(self, model = "gpt-3.5-turbo-0301"): | |||
if conf().get('expires_in_seconds'): | |||
sessions = ExpiredDict(conf().get('expires_in_seconds')) | |||
else: | |||
sessions = dict() | |||
self.sessions = sessions | |||
self.model = model | |||
def build_session(self, session_id, system_prompt=None): | |||
session = self.sessions.get(session_id, []) | |||
if len(session) == 0: | |||
if system_prompt is None: | |||
system_prompt = conf().get("character_desc", "") | |||
system_item = {'role': 'system', 'content': system_prompt} | |||
session.append(system_item) | |||
self.sessions[session_id] = session | |||
return session | |||
def build_session_query(self, query, session_id): | |||
''' | |||
build query with conversation history | |||
e.g. [ | |||
{"role": "system", "content": "You are a helpful assistant."}, | |||
{"role": "user", "content": "Who won the world series in 2020?"}, | |||
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, | |||
{"role": "user", "content": "Where was it played?"} | |||
] | |||
:param query: query content | |||
:param session_id: session id | |||
:return: query content with conversaction | |||
''' | |||
session = self.build_session(session_id) | |||
user_item = {'role': 'user', 'content': query} | |||
session.append(user_item) | |||
try: | |||
total_tokens = num_tokens_from_messages(session, self.model) | |||
max_tokens = conf().get("conversation_max_tokens", 1000) | |||
total_tokens = self.discard_exceed_conversation(session, max_tokens, total_tokens) | |||
logger.debug("prompt tokens used={}".format(total_tokens)) | |||
except Exception as e: | |||
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e))) | |||
return session | |||
def save_session(self, answer, session_id, total_tokens): | |||
max_tokens = conf().get("conversation_max_tokens", 1000) | |||
session = self.sessions.get(session_id) | |||
if session: | |||
# append conversation | |||
gpt_item = {'role': 'assistant', 'content': answer} | |||
session.append(gpt_item) | |||
# discard exceed limit conversation | |||
tokens_cnt = self.discard_exceed_conversation(session, max_tokens, total_tokens) | |||
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt)) | |||
def discard_exceed_conversation(self, session, max_tokens, total_tokens): | |||
dec_tokens = int(total_tokens) | |||
# logger.info("prompt tokens used={},max_tokens={}".format(used_tokens,max_tokens)) | |||
while dec_tokens > max_tokens: | |||
# pop first conversation | |||
if len(session) > 2: | |||
session.pop(1) | |||
elif len(session) == 2 and session[1]["role"] == "assistant": | |||
session.pop(1) | |||
break | |||
elif len(session) == 2 and session[1]["role"] == "user": | |||
logger.warn("user message exceed max_tokens. total_tokens={}".format(dec_tokens)) | |||
break | |||
else: | |||
logger.debug("max_tokens={}, total_tokens={}, len(sessions)={}".format(max_tokens, dec_tokens, len(session))) | |||
break | |||
try: | |||
cur_tokens = num_tokens_from_messages(session, self.model) | |||
dec_tokens = cur_tokens | |||
except Exception as e: | |||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||
dec_tokens = dec_tokens - max_tokens | |||
return dec_tokens | |||
def clear_session(self, session_id): | |||
self.sessions[session_id] = [] | |||
def clear_all_session(self): | |||
self.sessions.clear() | |||
# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |||
def num_tokens_from_messages(messages, model): | |||
"""Returns the number of tokens used by a list of messages.""" | |||
import tiktoken | |||
try: | |||
encoding = tiktoken.encoding_for_model(model) | |||
except KeyError: | |||
logger.debug("Warning: model not found. Using cl100k_base encoding.") | |||
encoding = tiktoken.get_encoding("cl100k_base") | |||
if model == "gpt-3.5-turbo": | |||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") | |||
elif model == "gpt-4": | |||
return num_tokens_from_messages(messages, model="gpt-4-0314") | |||
elif model == "gpt-3.5-turbo-0301": | |||
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n | |||
tokens_per_name = -1 # if there's a name, the role is omitted | |||
elif model == "gpt-4-0314": | |||
tokens_per_message = 3 | |||
tokens_per_name = 1 | |||
else: | |||
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.") | |||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") | |||
num_tokens = 0 | |||
for message in messages: | |||
num_tokens += tokens_per_message | |||
for key, value in message.items(): | |||
num_tokens += len(encoding.encode(value)) | |||
if key == "name": | |||
num_tokens += tokens_per_name | |||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> | |||
return num_tokens | |||
return args |
@@ -0,0 +1,92 @@ | |||
from bot.session_manager import Session | |||
from common.log import logger | |||
''' | |||
e.g. [ | |||
{"role": "system", "content": "You are a helpful assistant."}, | |||
{"role": "user", "content": "Who won the world series in 2020?"}, | |||
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."}, | |||
{"role": "user", "content": "Where was it played?"} | |||
] | |||
''' | |||
class ChatGPTSession(Session): | |||
def __init__(self, session_id, system_prompt=None, model= "gpt-3.5-turbo"): | |||
super().__init__(session_id, system_prompt) | |||
self.messages = [] | |||
self.model = model | |||
self.reset() | |||
def reset(self): | |||
system_item = {'role': 'system', 'content': self.system_prompt} | |||
self.messages = [system_item] | |||
def add_query(self, query): | |||
user_item = {'role': 'user', 'content': query} | |||
self.messages.append(user_item) | |||
def add_reply(self, reply): | |||
assistant_item = {'role': 'assistant', 'content': reply} | |||
self.messages.append(assistant_item) | |||
def discard_exceeding(self, max_tokens, cur_tokens= None): | |||
precise = True | |||
try: | |||
cur_tokens = num_tokens_from_messages(self.messages, self.model) | |||
except Exception as e: | |||
precise = False | |||
if cur_tokens is None: | |||
raise e | |||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||
while cur_tokens > max_tokens: | |||
if len(self.messages) > 2: | |||
self.messages.pop(1) | |||
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant": | |||
self.messages.pop(1) | |||
if precise: | |||
cur_tokens = num_tokens_from_messages(self.messages, self.model) | |||
else: | |||
cur_tokens = cur_tokens - max_tokens | |||
break | |||
elif len(self.messages) == 2 and self.messages[1]["role"] == "user": | |||
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens)) | |||
break | |||
else: | |||
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages))) | |||
break | |||
if precise: | |||
cur_tokens = num_tokens_from_messages(self.messages, self.model) | |||
else: | |||
cur_tokens = cur_tokens - max_tokens | |||
return cur_tokens | |||
# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |||
def num_tokens_from_messages(messages, model): | |||
"""Returns the number of tokens used by a list of messages.""" | |||
import tiktoken | |||
try: | |||
encoding = tiktoken.encoding_for_model(model) | |||
except KeyError: | |||
logger.debug("Warning: model not found. Using cl100k_base encoding.") | |||
encoding = tiktoken.get_encoding("cl100k_base") | |||
if model == "gpt-3.5-turbo": | |||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") | |||
elif model == "gpt-4": | |||
return num_tokens_from_messages(messages, model="gpt-4-0314") | |||
elif model == "gpt-3.5-turbo-0301": | |||
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n | |||
tokens_per_name = -1 # if there's a name, the role is omitted | |||
elif model == "gpt-4-0314": | |||
tokens_per_message = 3 | |||
tokens_per_name = 1 | |||
else: | |||
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.") | |||
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") | |||
num_tokens = 0 | |||
for message in messages: | |||
num_tokens += tokens_per_message | |||
for key, value in message.items(): | |||
num_tokens += len(encoding.encode(value)) | |||
if key == "name": | |||
num_tokens += tokens_per_name | |||
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> | |||
return num_tokens |
@@ -1,6 +1,9 @@ | |||
# encoding:utf-8 | |||
from bot.bot import Bot | |||
from bot.openai.open_ai_image import OpenAIImage | |||
from bot.openai.open_ai_session import OpenAISession | |||
from bot.session_manager import SessionManager | |||
from bridge.context import ContextType | |||
from bridge.reply import Reply, ReplyType | |||
from config import conf | |||
@@ -11,8 +14,9 @@ import time | |||
user_session = dict() | |||
# OpenAI对话模型API (可用) | |||
class OpenAIBot(Bot): | |||
class OpenAIBot(Bot, OpenAIImage): | |||
def __init__(self): | |||
super().__init__() | |||
openai.api_key = conf().get('open_ai_api_key') | |||
if conf().get('open_ai_api_base'): | |||
openai.api_base = conf().get('open_ai_api_base') | |||
@@ -20,32 +24,43 @@ class OpenAIBot(Bot): | |||
if proxy: | |||
openai.proxy = proxy | |||
self.sessions = SessionManager(OpenAISession, model= conf().get("model") or "text-davinci-003") | |||
def reply(self, query, context=None): | |||
# acquire reply content | |||
if context and context.type: | |||
if context.type == ContextType.TEXT: | |||
logger.info("[OPEN_AI] query={}".format(query)) | |||
from_user_id = context['session_id'] | |||
session_id = context['session_id'] | |||
reply = None | |||
if query == '#清除记忆': | |||
Session.clear_session(from_user_id) | |||
self.sessions.clear_session(session_id) | |||
reply = Reply(ReplyType.INFO, '记忆已清除') | |||
elif query == '#清除所有': | |||
Session.clear_all_session() | |||
self.sessions.clear_all_session() | |||
reply = Reply(ReplyType.INFO, '所有人记忆已清除') | |||
else: | |||
new_query = Session.build_session_query(query, from_user_id) | |||
session = self.sessions.session_query(query, session_id) | |||
new_query = str(session) | |||
logger.debug("[OPEN_AI] session query={}".format(new_query)) | |||
reply_content = self.reply_text(new_query, from_user_id, 0) | |||
logger.debug("[OPEN_AI] new_query={}, user={}, reply_cont={}".format(new_query, from_user_id, reply_content)) | |||
if reply_content and query: | |||
Session.save_session(query, reply_content, from_user_id) | |||
reply = Reply(ReplyType.TEXT, reply_content) | |||
total_tokens, completion_tokens, reply_content = self.reply_text(new_query, session_id, 0) | |||
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(new_query, session_id, reply_content, completion_tokens)) | |||
if total_tokens == 0 : | |||
reply = Reply(ReplyType.ERROR, reply_content) | |||
else: | |||
self.sessions.session_reply(reply_content, session_id, total_tokens) | |||
reply = Reply(ReplyType.TEXT, reply_content) | |||
return reply | |||
elif context.type == ContextType.IMAGE_CREATE: | |||
return self.create_img(query, 0) | |||
ok, retstring = self.create_img(query, 0) | |||
reply = None | |||
if ok: | |||
reply = Reply(ReplyType.IMAGE_URL, retstring) | |||
else: | |||
reply = Reply(ReplyType.ERROR, retstring) | |||
return reply | |||
def reply_text(self, query, user_id, retry_count=0): | |||
try: | |||
@@ -60,8 +75,10 @@ class OpenAIBot(Bot): | |||
stop=["\n\n\n"] | |||
) | |||
res_content = response.choices[0]['text'].strip().replace('<|endoftext|>', '') | |||
total_tokens = response["usage"]["total_tokens"] | |||
completion_tokens = response["usage"]["completion_tokens"] | |||
logger.info("[OPEN_AI] reply={}".format(res_content)) | |||
return res_content | |||
return total_tokens, completion_tokens, res_content | |||
except openai.error.RateLimitError as e: | |||
# rate limit exception | |||
logger.warn(e) | |||
@@ -70,106 +87,9 @@ class OpenAIBot(Bot): | |||
logger.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1)) | |||
return self.reply_text(query, user_id, retry_count+1) | |||
else: | |||
return "提问太快啦,请休息一下再问我吧" | |||
return 0,0, "提问太快啦,请休息一下再问我吧" | |||
except Exception as e: | |||
# unknown exception | |||
logger.exception(e) | |||
Session.clear_session(user_id) | |||
return "请再问我一次吧" | |||
def create_img(self, query, retry_count=0): | |||
try: | |||
logger.info("[OPEN_AI] image_query={}".format(query)) | |||
response = openai.Image.create( | |||
prompt=query, #图片描述 | |||
n=1, #每次生成图片的数量 | |||
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024 | |||
) | |||
image_url = response['data'][0]['url'] | |||
logger.info("[OPEN_AI] image_url={}".format(image_url)) | |||
return image_url | |||
except openai.error.RateLimitError as e: | |||
logger.warn(e) | |||
if retry_count < 1: | |||
time.sleep(5) | |||
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1)) | |||
return self.reply_text(query, retry_count+1) | |||
else: | |||
return "提问太快啦,请休息一下再问我吧" | |||
except Exception as e: | |||
logger.exception(e) | |||
return None | |||
class Session(object): | |||
@staticmethod | |||
def build_session_query(query, user_id): | |||
''' | |||
build query with conversation history | |||
e.g. Q: xxx | |||
A: xxx | |||
Q: xxx | |||
:param query: query content | |||
:param user_id: from user id | |||
:return: query content with conversaction | |||
''' | |||
prompt = conf().get("character_desc", "") | |||
if prompt: | |||
prompt += "<|endoftext|>\n\n\n" | |||
session = user_session.get(user_id, None) | |||
if session: | |||
for conversation in session: | |||
prompt += "Q: " + conversation["question"] + "\n\n\nA: " + conversation["answer"] + "<|endoftext|>\n" | |||
prompt += "Q: " + query + "\nA: " | |||
return prompt | |||
else: | |||
return prompt + "Q: " + query + "\nA: " | |||
@staticmethod | |||
def save_session(query, answer, user_id): | |||
max_tokens = conf().get("conversation_max_tokens") | |||
if not max_tokens: | |||
# default 3000 | |||
max_tokens = 1000 | |||
conversation = dict() | |||
conversation["question"] = query | |||
conversation["answer"] = answer | |||
session = user_session.get(user_id) | |||
logger.debug(conversation) | |||
logger.debug(session) | |||
if session: | |||
# append conversation | |||
session.append(conversation) | |||
else: | |||
# create session | |||
queue = list() | |||
queue.append(conversation) | |||
user_session[user_id] = queue | |||
# discard exceed limit conversation | |||
Session.discard_exceed_conversation(user_session[user_id], max_tokens) | |||
@staticmethod | |||
def discard_exceed_conversation(session, max_tokens): | |||
count = 0 | |||
count_list = list() | |||
for i in range(len(session)-1, -1, -1): | |||
# count tokens of conversation list | |||
history_conv = session[i] | |||
count += len(history_conv["question"]) + len(history_conv["answer"]) | |||
count_list.append(count) | |||
for c in count_list: | |||
if c > max_tokens: | |||
# pop first conversation | |||
session.pop(0) | |||
@staticmethod | |||
def clear_session(user_id): | |||
user_session[user_id] = [] | |||
@staticmethod | |||
def clear_all_session(): | |||
user_session.clear() | |||
self.sessions.clear_session(user_id) | |||
return 0,0, "请再问我一次吧" |
@@ -0,0 +1,37 @@ | |||
import time | |||
import openai | |||
from common.token_bucket import TokenBucket | |||
from common.log import logger | |||
from config import conf | |||
# OPENAI提供的画图接口 | |||
class OpenAIImage(object): | |||
def __init__(self): | |||
openai.api_key = conf().get('open_ai_api_key') | |||
if conf().get('rate_limit_dalle'): | |||
self.tb4dalle = TokenBucket(conf().get('rate_limit_dalle', 50)) | |||
def create_img(self, query, retry_count=0): | |||
try: | |||
if conf().get('rate_limit_dalle') and not self.tb4dalle.get_token(): | |||
return False, "请求太快了,请休息一下再问我吧" | |||
logger.info("[OPEN_AI] image_query={}".format(query)) | |||
response = openai.Image.create( | |||
prompt=query, #图片描述 | |||
n=1, #每次生成图片的数量 | |||
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024 | |||
) | |||
image_url = response['data'][0]['url'] | |||
logger.info("[OPEN_AI] image_url={}".format(image_url)) | |||
return True, image_url | |||
except openai.error.RateLimitError as e: | |||
logger.warn(e) | |||
if retry_count < 1: | |||
time.sleep(5) | |||
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1)) | |||
return self.create_img(query, retry_count+1) | |||
else: | |||
return False, "提问太快啦,请休息一下再问我吧" | |||
except Exception as e: | |||
logger.exception(e) | |||
return False, str(e) |
@@ -0,0 +1,77 @@ | |||
from bot.session_manager import Session | |||
from common.log import logger | |||
class OpenAISession(Session): | |||
def __init__(self, session_id, system_prompt=None, model= "text-davinci-003"): | |||
super().__init__(session_id, system_prompt) | |||
self.conversation = [] | |||
self.model = model | |||
self.reset() | |||
def reset(self): | |||
pass | |||
def add_query(self, query): | |||
question = {'type': 'question', 'content': query} | |||
self.conversation.append(question) | |||
def add_reply(self, reply): | |||
answer = {'type': 'answer', 'content': reply} | |||
self.conversation.append(answer) | |||
def __str__(self): | |||
''' | |||
e.g. Q: xxx | |||
A: xxx | |||
Q: xxx | |||
''' | |||
prompt = self.system_prompt | |||
if prompt: | |||
prompt += "<|endoftext|>\n\n\n" | |||
for item in self.conversation: | |||
if item['type'] == 'question': | |||
prompt += "Q: " + item['content'] + "\n" | |||
elif item['type'] == 'answer': | |||
prompt += "\n\nA: " + item['content'] + "<|endoftext|>\n" | |||
if len(self.conversation) > 0 and self.conversation[-1]['type'] == 'question': | |||
prompt += "A: " | |||
return prompt | |||
def discard_exceeding(self, max_tokens, cur_tokens= None): | |||
precise = True | |||
try: | |||
cur_tokens = num_tokens_from_string(str(self), self.model) | |||
except Exception as e: | |||
precise = False | |||
if cur_tokens is None: | |||
raise e | |||
logger.debug("Exception when counting tokens precisely for query: {}".format(e)) | |||
while cur_tokens > max_tokens: | |||
if len(self.conversation) > 1: | |||
self.conversation.pop(0) | |||
elif len(self.conversation) == 1 and self.conversation[0]["type"] == "answer": | |||
self.conversation.pop(0) | |||
if precise: | |||
cur_tokens = num_tokens_from_string(str(self), self.model) | |||
else: | |||
cur_tokens = len(str(self)) | |||
break | |||
elif len(self.conversation) == 1 and self.conversation[0]["type"] == "question": | |||
logger.warn("user question exceed max_tokens. total_tokens={}".format(cur_tokens)) | |||
break | |||
else: | |||
logger.debug("max_tokens={}, total_tokens={}, len(conversation)={}".format(max_tokens, cur_tokens, len(self.conversation))) | |||
break | |||
if precise: | |||
cur_tokens = num_tokens_from_string(str(self), self.model) | |||
else: | |||
cur_tokens = len(str(self)) | |||
return cur_tokens | |||
# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb | |||
def num_tokens_from_string(string: str, model: str) -> int: | |||
"""Returns the number of tokens in a text string.""" | |||
import tiktoken | |||
encoding = tiktoken.encoding_for_model(model) | |||
num_tokens = len(encoding.encode(string,disallowed_special=())) | |||
return num_tokens |
@@ -0,0 +1,81 @@ | |||
from common.expired_dict import ExpiredDict | |||
from common.log import logger | |||
from config import conf | |||
class Session(object): | |||
def __init__(self, session_id, system_prompt=None): | |||
self.session_id = session_id | |||
if system_prompt is None: | |||
self.system_prompt = conf().get("character_desc", "") | |||
else: | |||
self.system_prompt = system_prompt | |||
# 重置会话 | |||
def reset(self): | |||
raise NotImplementedError | |||
def set_system_prompt(self, system_prompt): | |||
self.system_prompt = system_prompt | |||
self.reset() | |||
def add_query(self, query): | |||
raise NotImplementedError | |||
def add_reply(self, reply): | |||
raise NotImplementedError | |||
def discard_exceeding(self, max_tokens=None, cur_tokens=None): | |||
raise NotImplementedError | |||
class SessionManager(object): | |||
def __init__(self, sessioncls, **session_args): | |||
if conf().get('expires_in_seconds'): | |||
sessions = ExpiredDict(conf().get('expires_in_seconds')) | |||
else: | |||
sessions = dict() | |||
self.sessions = sessions | |||
self.sessioncls = sessioncls | |||
self.session_args = session_args | |||
def build_session(self, session_id, system_prompt=None): | |||
''' | |||
如果session_id不在sessions中,创建一个新的session并添加到sessions中 | |||
如果system_prompt不会空,会更新session的system_prompt并重置session | |||
''' | |||
if session_id not in self.sessions: | |||
self.sessions[session_id] = self.sessioncls(session_id, system_prompt, **self.session_args) | |||
elif system_prompt is not None: # 如果有新的system_prompt,更新并重置session | |||
self.sessions[session_id].set_system_prompt(system_prompt) | |||
session = self.sessions[session_id] | |||
return session | |||
def session_query(self, query, session_id): | |||
session = self.build_session(session_id) | |||
session.add_query(query) | |||
try: | |||
max_tokens = conf().get("conversation_max_tokens", 1000) | |||
total_tokens = session.discard_exceeding(max_tokens, None) | |||
logger.debug("prompt tokens used={}".format(total_tokens)) | |||
except Exception as e: | |||
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e))) | |||
return session | |||
def session_reply(self, reply, session_id, total_tokens = None): | |||
session = self.build_session(session_id) | |||
session.add_reply(reply) | |||
try: | |||
max_tokens = conf().get("conversation_max_tokens", 1000) | |||
tokens_cnt = session.discard_exceeding(max_tokens, total_tokens) | |||
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt)) | |||
except Exception as e: | |||
logger.debug("Exception when counting tokens precisely for session: {}".format(str(e))) | |||
return session | |||
def clear_session(self, session_id): | |||
if session_id in self.sessions: | |||
del(self.sessions[session_id]) | |||
def clear_all_session(self): | |||
self.sessions.clear() |
@@ -52,7 +52,7 @@ class Dungeon(Plugin): | |||
if e_context['context'].type != ContextType.TEXT: | |||
return | |||
bottype = Bridge().get_bot_type("chat") | |||
if bottype != const.CHATGPT: | |||
if bottype not in (const.CHATGPT, const.OPEN_AI): | |||
return | |||
bot = Bridge().get_bot("chat") | |||
content = e_context['context'].content[:] | |||
@@ -179,7 +179,7 @@ class Godcmd(Plugin): | |||
elif cmd == "id": | |||
ok, result = True, f"用户id=\n{user}" | |||
elif cmd == "reset": | |||
if bottype == const.CHATGPT: | |||
if bottype in (const.CHATGPT, const.OPEN_AI): | |||
bot.sessions.clear_session(session_id) | |||
ok, result = True, "会话已重置" | |||
else: | |||
@@ -201,7 +201,7 @@ class Godcmd(Plugin): | |||
load_config() | |||
ok, result = True, "配置已重载" | |||
elif cmd == "resetall": | |||
if bottype == const.CHATGPT: | |||
if bottype in (const.CHATGPT, const.OPEN_AI): | |||
bot.sessions.clear_all_session() | |||
ok, result = True, "重置所有会话成功" | |||
else: | |||
@@ -17,15 +17,15 @@ class RolePlay(): | |||
self.sessionid = sessionid | |||
self.wrapper = wrapper or "%s" # 用于包装用户输入 | |||
self.desc = desc | |||
self.bot.sessions.build_session(self.sessionid, system_prompt=self.desc) | |||
def reset(self): | |||
self.bot.sessions.clear_session(self.sessionid) | |||
def action(self, user_action): | |||
session = self.bot.sessions.build_session(self.sessionid, self.desc) | |||
if session[0]['role'] == 'system' and session[0]['content'] != self.desc: # 目前没有触发session过期事件,这里先简单判断,然后重置 | |||
self.reset() | |||
self.bot.sessions.build_session(self.sessionid, self.desc) | |||
session = self.bot.sessions.build_session(self.sessionid) | |||
if session.system_prompt != self.desc: # 目前没有触发session过期事件,这里先简单判断,然后重置 | |||
session.set_system_prompt(self.desc) | |||
prompt = self.wrapper % user_action | |||
return prompt | |||
@@ -74,7 +74,7 @@ class Role(Plugin): | |||
if e_context['context'].type != ContextType.TEXT: | |||
return | |||
bottype = Bridge().get_bot_type("chat") | |||
if bottype != const.CHATGPT: | |||
if bottype not in (const.CHATGPT, const.OPEN_AI): | |||
return | |||
bot = Bridge().get_bot("chat") | |||
content = e_context['context'].content[:] | |||