Browse Source

Merge pull request #621 from lanvent/dev2

refactor and support plugins for OpenAIBot
master
zhayujie GitHub 1 year ago
parent
commit
f76cb1231e
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 341 additions and 276 deletions
  1. +14
    -156
      bot/chatgpt/chat_gpt_bot.py
  2. +92
    -0
      bot/chatgpt/chat_gpt_session.py
  3. +32
    -112
      bot/openai/open_ai_bot.py
  4. +37
    -0
      bot/openai/open_ai_image.py
  5. +77
    -0
      bot/openai/open_ai_session.py
  6. +81
    -0
      bot/session_manager.py
  7. +1
    -1
      plugins/dungeon/dungeon.py
  8. +2
    -2
      plugins/godcmd/godcmd.py
  9. +5
    -5
      plugins/role/role.py

+ 14
- 156
bot/chatgpt/chat_gpt_bot.py View File

@@ -1,6 +1,9 @@
# encoding:utf-8

from bot.bot import Bot
from bot.chatgpt.chat_gpt_session import ChatGPTSession
from bot.openai.open_ai_image import OpenAIImage
from bot.session_manager import Session, SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from config import conf, load_config
@@ -10,21 +13,20 @@ from common.expired_dict import ExpiredDict
import openai
import time


# OpenAI对话模型API (可用)
class ChatGPTBot(Bot):
class ChatGPTBot(Bot,OpenAIImage):
def __init__(self):
super().__init__()
openai.api_key = conf().get('open_ai_api_key')
if conf().get('open_ai_api_base'):
openai.api_base = conf().get('open_ai_api_base')
proxy = conf().get('proxy')
self.sessions = SessionManager(model= conf().get("model") or "gpt-3.5-turbo")
if proxy:
openai.proxy = proxy
if conf().get('rate_limit_chatgpt'):
self.tb4chatgpt = TokenBucket(conf().get('rate_limit_chatgpt', 20))
if conf().get('rate_limit_dalle'):
self.tb4dalle = TokenBucket(conf().get('rate_limit_dalle', 50))
self.sessions = SessionManager(ChatGPTSession, model= conf().get("model") or "gpt-3.5-turbo")

def reply(self, query, context=None):
# acquire reply content
@@ -45,19 +47,19 @@ class ChatGPTBot(Bot):
reply = Reply(ReplyType.INFO, '配置已更新')
if reply:
return reply
session = self.sessions.build_session_query(query, session_id)
logger.debug("[OPEN_AI] session query={}".format(session))
session = self.sessions.session_query(query, session_id)
logger.debug("[OPEN_AI] session query={}".format(session.messages))

# if context.get('stream'):
# # reply in stream
# return self.reply_text_stream(query, new_query, session_id)

reply_content = self.reply_text(session, session_id, 0)
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session, session_id, reply_content["content"], reply_content["completion_tokens"]))
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session.messages, session_id, reply_content["content"], reply_content["completion_tokens"]))
if reply_content['completion_tokens'] == 0 and len(reply_content['content']) > 0:
reply = Reply(ReplyType.ERROR, reply_content['content'])
elif reply_content["completion_tokens"] > 0:
self.sessions.save_session(reply_content["content"], session_id, reply_content["total_tokens"])
self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
reply = Reply(ReplyType.TEXT, reply_content["content"])
else:
reply = Reply(ReplyType.ERROR, reply_content['content'])
@@ -86,7 +88,7 @@ class ChatGPTBot(Bot):
"presence_penalty":conf().get('presence_penalty', 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
}

def reply_text(self, session, session_id, retry_count=0) -> dict:
def reply_text(self, session:ChatGPTSession, session_id, retry_count=0) -> dict:
'''
call openai's ChatCompletion to get the answer
:param session: a conversation session
@@ -98,7 +100,7 @@ class ChatGPTBot(Bot):
if conf().get('rate_limit_chatgpt') and not self.tb4chatgpt.get_token():
return {"completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧"}
response = openai.ChatCompletion.create(
messages=session, **self.compose_args()
messages=session.messages, **self.compose_args()
)
# logger.info("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))
return {"total_tokens": response["usage"]["total_tokens"],
@@ -128,31 +130,6 @@ class ChatGPTBot(Bot):
self.sessions.clear_session(session_id)
return {"completion_tokens": 0, "content": "请再问我一次吧"}

def create_img(self, query, retry_count=0):
try:
if conf().get('rate_limit_dalle') and not self.tb4dalle.get_token():
return False, "请求太快了,请休息一下再问我吧"
logger.info("[OPEN_AI] image_query={}".format(query))
response = openai.Image.create(
prompt=query, #图片描述
n=1, #每次生成图片的数量
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
)
image_url = response['data'][0]['url']
logger.info("[OPEN_AI] image_url={}".format(image_url))
return True, image_url
except openai.error.RateLimitError as e:
logger.warn(e)
if retry_count < 1:
time.sleep(5)
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
return self.create_img(query, retry_count+1)
else:
return False, "提问太快啦,请休息一下再问我吧"
except Exception as e:
logger.exception(e)
return False, str(e)


class AzureChatGPTBot(ChatGPTBot):
def __init__(self):
@@ -164,123 +141,4 @@ class AzureChatGPTBot(ChatGPTBot):
args = super().compose_args()
args["engine"] = args["model"]
del(args["model"])
return args

class SessionManager(object):
def __init__(self, model = "gpt-3.5-turbo-0301"):
if conf().get('expires_in_seconds'):
sessions = ExpiredDict(conf().get('expires_in_seconds'))
else:
sessions = dict()
self.sessions = sessions
self.model = model

def build_session(self, session_id, system_prompt=None):
session = self.sessions.get(session_id, [])
if len(session) == 0:
if system_prompt is None:
system_prompt = conf().get("character_desc", "")
system_item = {'role': 'system', 'content': system_prompt}
session.append(system_item)
self.sessions[session_id] = session
return session

def build_session_query(self, query, session_id):
'''
build query with conversation history
e.g. [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
:param query: query content
:param session_id: session id
:return: query content with conversaction
'''
session = self.build_session(session_id)
user_item = {'role': 'user', 'content': query}
session.append(user_item)
try:
total_tokens = num_tokens_from_messages(session, self.model)
max_tokens = conf().get("conversation_max_tokens", 1000)
total_tokens = self.discard_exceed_conversation(session, max_tokens, total_tokens)
logger.debug("prompt tokens used={}".format(total_tokens))
except Exception as e:
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e)))

return session

def save_session(self, answer, session_id, total_tokens):
max_tokens = conf().get("conversation_max_tokens", 1000)
session = self.sessions.get(session_id)
if session:
# append conversation
gpt_item = {'role': 'assistant', 'content': answer}
session.append(gpt_item)

# discard exceed limit conversation
tokens_cnt = self.discard_exceed_conversation(session, max_tokens, total_tokens)
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt))

def discard_exceed_conversation(self, session, max_tokens, total_tokens):
dec_tokens = int(total_tokens)
# logger.info("prompt tokens used={},max_tokens={}".format(used_tokens,max_tokens))
while dec_tokens > max_tokens:
# pop first conversation
if len(session) > 2:
session.pop(1)
elif len(session) == 2 and session[1]["role"] == "assistant":
session.pop(1)
break
elif len(session) == 2 and session[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(dec_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(sessions)={}".format(max_tokens, dec_tokens, len(session)))
break
try:
cur_tokens = num_tokens_from_messages(session, self.model)
dec_tokens = cur_tokens
except Exception as e:
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
dec_tokens = dec_tokens - max_tokens
return dec_tokens

def clear_session(self, session_id):
self.sessions[session_id] = []

def clear_all_session(self):
self.sessions.clear()

# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, model):
"""Returns the number of tokens used by a list of messages."""
import tiktoken
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
return num_tokens_from_messages(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
return args

+ 92
- 0
bot/chatgpt/chat_gpt_session.py View File

@@ -0,0 +1,92 @@
from bot.session_manager import Session
from common.log import logger
'''
e.g. [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
'''
class ChatGPTSession(Session):
def __init__(self, session_id, system_prompt=None, model= "gpt-3.5-turbo"):
super().__init__(session_id, system_prompt)
self.messages = []
self.model = model
self.reset()
def reset(self):
system_item = {'role': 'system', 'content': self.system_prompt}
self.messages = [system_item]

def add_query(self, query):
user_item = {'role': 'user', 'content': query}
self.messages.append(user_item)

def add_reply(self, reply):
assistant_item = {'role': 'assistant', 'content': reply}
self.messages.append(assistant_item)
def discard_exceeding(self, max_tokens, cur_tokens= None):
precise = True
try:
cur_tokens = num_tokens_from_messages(self.messages, self.model)
except Exception as e:
precise = False
if cur_tokens is None:
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.messages) > 2:
self.messages.pop(1)
elif len(self.messages) == 2 and self.messages[1]["role"] == "assistant":
self.messages.pop(1)
if precise:
cur_tokens = num_tokens_from_messages(self.messages, self.model)
else:
cur_tokens = cur_tokens - max_tokens
break
elif len(self.messages) == 2 and self.messages[1]["role"] == "user":
logger.warn("user message exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(messages)={}".format(max_tokens, cur_tokens, len(self.messages)))
break
if precise:
cur_tokens = num_tokens_from_messages(self.messages, self.model)
else:
cur_tokens = cur_tokens - max_tokens
return cur_tokens

# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, model):
"""Returns the number of tokens used by a list of messages."""
import tiktoken
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logger.debug("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo":
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
elif model == "gpt-4":
return num_tokens_from_messages(messages, model="gpt-4-0314")
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif model == "gpt-4-0314":
tokens_per_message = 3
tokens_per_name = 1
else:
logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301")
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens

+ 32
- 112
bot/openai/open_ai_bot.py View File

@@ -1,6 +1,9 @@
# encoding:utf-8

from bot.bot import Bot
from bot.openai.open_ai_image import OpenAIImage
from bot.openai.open_ai_session import OpenAISession
from bot.session_manager import SessionManager
from bridge.context import ContextType
from bridge.reply import Reply, ReplyType
from config import conf
@@ -11,8 +14,9 @@ import time
user_session = dict()

# OpenAI对话模型API (可用)
class OpenAIBot(Bot):
class OpenAIBot(Bot, OpenAIImage):
def __init__(self):
super().__init__()
openai.api_key = conf().get('open_ai_api_key')
if conf().get('open_ai_api_base'):
openai.api_base = conf().get('open_ai_api_base')
@@ -20,32 +24,43 @@ class OpenAIBot(Bot):
if proxy:
openai.proxy = proxy

self.sessions = SessionManager(OpenAISession, model= conf().get("model") or "text-davinci-003")

def reply(self, query, context=None):
# acquire reply content
if context and context.type:
if context.type == ContextType.TEXT:
logger.info("[OPEN_AI] query={}".format(query))
from_user_id = context['session_id']
session_id = context['session_id']
reply = None
if query == '#清除记忆':
Session.clear_session(from_user_id)
self.sessions.clear_session(session_id)
reply = Reply(ReplyType.INFO, '记忆已清除')
elif query == '#清除所有':
Session.clear_all_session()
self.sessions.clear_all_session()
reply = Reply(ReplyType.INFO, '所有人记忆已清除')
else:
new_query = Session.build_session_query(query, from_user_id)
session = self.sessions.session_query(query, session_id)
new_query = str(session)
logger.debug("[OPEN_AI] session query={}".format(new_query))

reply_content = self.reply_text(new_query, from_user_id, 0)
logger.debug("[OPEN_AI] new_query={}, user={}, reply_cont={}".format(new_query, from_user_id, reply_content))
if reply_content and query:
Session.save_session(query, reply_content, from_user_id)
reply = Reply(ReplyType.TEXT, reply_content)
total_tokens, completion_tokens, reply_content = self.reply_text(new_query, session_id, 0)
logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(new_query, session_id, reply_content, completion_tokens))

if total_tokens == 0 :
reply = Reply(ReplyType.ERROR, reply_content)
else:
self.sessions.session_reply(reply_content, session_id, total_tokens)
reply = Reply(ReplyType.TEXT, reply_content)
return reply
elif context.type == ContextType.IMAGE_CREATE:
return self.create_img(query, 0)
ok, retstring = self.create_img(query, 0)
reply = None
if ok:
reply = Reply(ReplyType.IMAGE_URL, retstring)
else:
reply = Reply(ReplyType.ERROR, retstring)
return reply

def reply_text(self, query, user_id, retry_count=0):
try:
@@ -60,8 +75,10 @@ class OpenAIBot(Bot):
stop=["\n\n\n"]
)
res_content = response.choices[0]['text'].strip().replace('<|endoftext|>', '')
total_tokens = response["usage"]["total_tokens"]
completion_tokens = response["usage"]["completion_tokens"]
logger.info("[OPEN_AI] reply={}".format(res_content))
return res_content
return total_tokens, completion_tokens, res_content
except openai.error.RateLimitError as e:
# rate limit exception
logger.warn(e)
@@ -70,106 +87,9 @@ class OpenAIBot(Bot):
logger.warn("[OPEN_AI] RateLimit exceed, 第{}次重试".format(retry_count+1))
return self.reply_text(query, user_id, retry_count+1)
else:
return "提问太快啦,请休息一下再问我吧"
return 0,0, "提问太快啦,请休息一下再问我吧"
except Exception as e:
# unknown exception
logger.exception(e)
Session.clear_session(user_id)
return "请再问我一次吧"


def create_img(self, query, retry_count=0):
try:
logger.info("[OPEN_AI] image_query={}".format(query))
response = openai.Image.create(
prompt=query, #图片描述
n=1, #每次生成图片的数量
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
)
image_url = response['data'][0]['url']
logger.info("[OPEN_AI] image_url={}".format(image_url))
return image_url
except openai.error.RateLimitError as e:
logger.warn(e)
if retry_count < 1:
time.sleep(5)
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
return self.reply_text(query, retry_count+1)
else:
return "提问太快啦,请休息一下再问我吧"
except Exception as e:
logger.exception(e)
return None


class Session(object):
@staticmethod
def build_session_query(query, user_id):
'''
build query with conversation history
e.g. Q: xxx
A: xxx
Q: xxx
:param query: query content
:param user_id: from user id
:return: query content with conversaction
'''
prompt = conf().get("character_desc", "")
if prompt:
prompt += "<|endoftext|>\n\n\n"
session = user_session.get(user_id, None)
if session:
for conversation in session:
prompt += "Q: " + conversation["question"] + "\n\n\nA: " + conversation["answer"] + "<|endoftext|>\n"
prompt += "Q: " + query + "\nA: "
return prompt
else:
return prompt + "Q: " + query + "\nA: "

@staticmethod
def save_session(query, answer, user_id):
max_tokens = conf().get("conversation_max_tokens")
if not max_tokens:
# default 3000
max_tokens = 1000
conversation = dict()
conversation["question"] = query
conversation["answer"] = answer
session = user_session.get(user_id)
logger.debug(conversation)
logger.debug(session)
if session:
# append conversation
session.append(conversation)
else:
# create session
queue = list()
queue.append(conversation)
user_session[user_id] = queue

# discard exceed limit conversation
Session.discard_exceed_conversation(user_session[user_id], max_tokens)


@staticmethod
def discard_exceed_conversation(session, max_tokens):
count = 0
count_list = list()
for i in range(len(session)-1, -1, -1):
# count tokens of conversation list
history_conv = session[i]
count += len(history_conv["question"]) + len(history_conv["answer"])
count_list.append(count)

for c in count_list:
if c > max_tokens:
# pop first conversation
session.pop(0)

@staticmethod
def clear_session(user_id):
user_session[user_id] = []

@staticmethod
def clear_all_session():
user_session.clear()
self.sessions.clear_session(user_id)
return 0,0, "请再问我一次吧"

+ 37
- 0
bot/openai/open_ai_image.py View File

@@ -0,0 +1,37 @@
import time
import openai
from common.token_bucket import TokenBucket
from common.log import logger
from config import conf

# OPENAI提供的画图接口
class OpenAIImage(object):
def __init__(self):
openai.api_key = conf().get('open_ai_api_key')
if conf().get('rate_limit_dalle'):
self.tb4dalle = TokenBucket(conf().get('rate_limit_dalle', 50))
def create_img(self, query, retry_count=0):
try:
if conf().get('rate_limit_dalle') and not self.tb4dalle.get_token():
return False, "请求太快了,请休息一下再问我吧"
logger.info("[OPEN_AI] image_query={}".format(query))
response = openai.Image.create(
prompt=query, #图片描述
n=1, #每次生成图片的数量
size="256x256" #图片大小,可选有 256x256, 512x512, 1024x1024
)
image_url = response['data'][0]['url']
logger.info("[OPEN_AI] image_url={}".format(image_url))
return True, image_url
except openai.error.RateLimitError as e:
logger.warn(e)
if retry_count < 1:
time.sleep(5)
logger.warn("[OPEN_AI] ImgCreate RateLimit exceed, 第{}次重试".format(retry_count+1))
return self.create_img(query, retry_count+1)
else:
return False, "提问太快啦,请休息一下再问我吧"
except Exception as e:
logger.exception(e)
return False, str(e)

+ 77
- 0
bot/openai/open_ai_session.py View File

@@ -0,0 +1,77 @@
from bot.session_manager import Session
from common.log import logger
class OpenAISession(Session):
def __init__(self, session_id, system_prompt=None, model= "text-davinci-003"):
super().__init__(session_id, system_prompt)
self.conversation = []
self.model = model
self.reset()
def reset(self):
pass

def add_query(self, query):
question = {'type': 'question', 'content': query}
self.conversation.append(question)

def add_reply(self, reply):
answer = {'type': 'answer', 'content': reply}
self.conversation.append(answer)
def __str__(self):
'''
e.g. Q: xxx
A: xxx
Q: xxx
'''
prompt = self.system_prompt
if prompt:
prompt += "<|endoftext|>\n\n\n"
for item in self.conversation:
if item['type'] == 'question':
prompt += "Q: " + item['content'] + "\n"
elif item['type'] == 'answer':
prompt += "\n\nA: " + item['content'] + "<|endoftext|>\n"

if len(self.conversation) > 0 and self.conversation[-1]['type'] == 'question':
prompt += "A: "
return prompt

def discard_exceeding(self, max_tokens, cur_tokens= None):
precise = True
try:
cur_tokens = num_tokens_from_string(str(self), self.model)
except Exception as e:
precise = False
if cur_tokens is None:
raise e
logger.debug("Exception when counting tokens precisely for query: {}".format(e))
while cur_tokens > max_tokens:
if len(self.conversation) > 1:
self.conversation.pop(0)
elif len(self.conversation) == 1 and self.conversation[0]["type"] == "answer":
self.conversation.pop(0)
if precise:
cur_tokens = num_tokens_from_string(str(self), self.model)
else:
cur_tokens = len(str(self))
break
elif len(self.conversation) == 1 and self.conversation[0]["type"] == "question":
logger.warn("user question exceed max_tokens. total_tokens={}".format(cur_tokens))
break
else:
logger.debug("max_tokens={}, total_tokens={}, len(conversation)={}".format(max_tokens, cur_tokens, len(self.conversation)))
break
if precise:
cur_tokens = num_tokens_from_string(str(self), self.model)
else:
cur_tokens = len(str(self))
return cur_tokens

# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_string(string: str, model: str) -> int:
"""Returns the number of tokens in a text string."""
import tiktoken
encoding = tiktoken.encoding_for_model(model)
num_tokens = len(encoding.encode(string,disallowed_special=()))
return num_tokens

+ 81
- 0
bot/session_manager.py View File

@@ -0,0 +1,81 @@
from common.expired_dict import ExpiredDict
from common.log import logger
from config import conf

class Session(object):
def __init__(self, session_id, system_prompt=None):
self.session_id = session_id
if system_prompt is None:
self.system_prompt = conf().get("character_desc", "")
else:
self.system_prompt = system_prompt

# 重置会话
def reset(self):
raise NotImplementedError

def set_system_prompt(self, system_prompt):
self.system_prompt = system_prompt
self.reset()

def add_query(self, query):
raise NotImplementedError

def add_reply(self, reply):
raise NotImplementedError
def discard_exceeding(self, max_tokens=None, cur_tokens=None):
raise NotImplementedError



class SessionManager(object):
def __init__(self, sessioncls, **session_args):
if conf().get('expires_in_seconds'):
sessions = ExpiredDict(conf().get('expires_in_seconds'))
else:
sessions = dict()
self.sessions = sessions
self.sessioncls = sessioncls
self.session_args = session_args

def build_session(self, session_id, system_prompt=None):
'''
如果session_id不在sessions中,创建一个新的session并添加到sessions中
如果system_prompt不会空,会更新session的system_prompt并重置session
'''
if session_id not in self.sessions:
self.sessions[session_id] = self.sessioncls(session_id, system_prompt, **self.session_args)
elif system_prompt is not None: # 如果有新的system_prompt,更新并重置session
self.sessions[session_id].set_system_prompt(system_prompt)
session = self.sessions[session_id]
return session
def session_query(self, query, session_id):
session = self.build_session(session_id)
session.add_query(query)
try:
max_tokens = conf().get("conversation_max_tokens", 1000)
total_tokens = session.discard_exceeding(max_tokens, None)
logger.debug("prompt tokens used={}".format(total_tokens))
except Exception as e:
logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e)))
return session

def session_reply(self, reply, session_id, total_tokens = None):
session = self.build_session(session_id)
session.add_reply(reply)
try:
max_tokens = conf().get("conversation_max_tokens", 1000)
tokens_cnt = session.discard_exceeding(max_tokens, total_tokens)
logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt))
except Exception as e:
logger.debug("Exception when counting tokens precisely for session: {}".format(str(e)))
return session

def clear_session(self, session_id):
if session_id in self.sessions:
del(self.sessions[session_id])

def clear_all_session(self):
self.sessions.clear()

+ 1
- 1
plugins/dungeon/dungeon.py View File

@@ -52,7 +52,7 @@ class Dungeon(Plugin):
if e_context['context'].type != ContextType.TEXT:
return
bottype = Bridge().get_bot_type("chat")
if bottype != const.CHATGPT:
if bottype not in (const.CHATGPT, const.OPEN_AI):
return
bot = Bridge().get_bot("chat")
content = e_context['context'].content[:]


+ 2
- 2
plugins/godcmd/godcmd.py View File

@@ -179,7 +179,7 @@ class Godcmd(Plugin):
elif cmd == "id":
ok, result = True, f"用户id=\n{user}"
elif cmd == "reset":
if bottype == const.CHATGPT:
if bottype in (const.CHATGPT, const.OPEN_AI):
bot.sessions.clear_session(session_id)
ok, result = True, "会话已重置"
else:
@@ -201,7 +201,7 @@ class Godcmd(Plugin):
load_config()
ok, result = True, "配置已重载"
elif cmd == "resetall":
if bottype == const.CHATGPT:
if bottype in (const.CHATGPT, const.OPEN_AI):
bot.sessions.clear_all_session()
ok, result = True, "重置所有会话成功"
else:


+ 5
- 5
plugins/role/role.py View File

@@ -17,15 +17,15 @@ class RolePlay():
self.sessionid = sessionid
self.wrapper = wrapper or "%s" # 用于包装用户输入
self.desc = desc
self.bot.sessions.build_session(self.sessionid, system_prompt=self.desc)

def reset(self):
self.bot.sessions.clear_session(self.sessionid)

def action(self, user_action):
session = self.bot.sessions.build_session(self.sessionid, self.desc)
if session[0]['role'] == 'system' and session[0]['content'] != self.desc: # 目前没有触发session过期事件,这里先简单判断,然后重置
self.reset()
self.bot.sessions.build_session(self.sessionid, self.desc)
session = self.bot.sessions.build_session(self.sessionid)
if session.system_prompt != self.desc: # 目前没有触发session过期事件,这里先简单判断,然后重置
session.set_system_prompt(self.desc)
prompt = self.wrapper % user_action
return prompt

@@ -74,7 +74,7 @@ class Role(Plugin):
if e_context['context'].type != ContextType.TEXT:
return
bottype = Bridge().get_bot_type("chat")
if bottype != const.CHATGPT:
if bottype not in (const.CHATGPT, const.OPEN_AI):
return
bot = Bridge().get_bot("chat")
content = e_context['context'].content[:]


Loading…
Cancel
Save