diff --git a/README.md b/README.md index b77d448..2b6d4c6 100644 --- a/README.md +++ b/README.md @@ -81,7 +81,10 @@ pip3 install --upgrade openai **(3) 拓展依赖 (可选):** 语音识别及语音回复相关依赖:[#415](https://github.com/zhayujie/chatgpt-on-wechat/issues/415)。 - +让会话token数量的计算更加精准: +```bash +pip3 install --upgrade tiktoken +``` ## 配置 diff --git a/bot/chatgpt/chat_gpt_bot.py b/bot/chatgpt/chat_gpt_bot.py index 607f6c0..0db31d2 100644 --- a/bot/chatgpt/chat_gpt_bot.py +++ b/bot/chatgpt/chat_gpt_bot.py @@ -18,7 +18,7 @@ class ChatGPTBot(Bot): if conf().get('open_ai_api_base'): openai.api_base = conf().get('open_ai_api_base') proxy = conf().get('proxy') - self.sessions = SessionManager() + self.sessions = SessionManager(model= conf().get("model") or "gpt-3.5-turbo") if proxy: openai.proxy = proxy if conf().get('rate_limit_chatgpt'): @@ -53,7 +53,7 @@ class ChatGPTBot(Bot): # return self.reply_text_stream(query, new_query, session_id) reply_content = self.reply_text(session, session_id, 0) - logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}".format(session, session_id, reply_content["content"])) + logger.debug("[OPEN_AI] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session, session_id, reply_content["content"], reply_content["completion_tokens"])) if reply_content['completion_tokens'] == 0 and len(reply_content['content']) > 0: reply = Reply(ReplyType.ERROR, reply_content['content']) elif reply_content["completion_tokens"] > 0: @@ -166,14 +166,14 @@ class AzureChatGPTBot(ChatGPTBot): del(args["model"]) return args - class SessionManager(object): - def __init__(self): + def __init__(self, model = "gpt-3.5-turbo-0301"): if conf().get('expires_in_seconds'): sessions = ExpiredDict(conf().get('expires_in_seconds')) else: sessions = dict() self.sessions = sessions + self.model = model def build_session(self, session_id, system_prompt=None): session = self.sessions.get(session_id, []) @@ -201,15 +201,18 @@ class SessionManager(object): session = self.build_session(session_id) user_item = {'role': 'user', 'content': query} session.append(user_item) + try: + total_tokens = num_tokens_from_messages(session, self.model) + max_tokens = conf().get("conversation_max_tokens", 1000) + total_tokens = self.discard_exceed_conversation(session, max_tokens, total_tokens) + logger.debug("prompt tokens used={}".format(total_tokens)) + except Exception as e: + logger.debug("Exception when counting tokens precisely for prompt: {}".format(str(e))) + return session def save_session(self, answer, session_id, total_tokens): - max_tokens = conf().get("conversation_max_tokens") - if not max_tokens: - # default 3000 - max_tokens = 1000 - max_tokens = int(max_tokens) - + max_tokens = conf().get("conversation_max_tokens", 1000) session = self.sessions.get(session_id) if session: # append conversation @@ -217,22 +220,67 @@ class SessionManager(object): session.append(gpt_item) # discard exceed limit conversation - self.discard_exceed_conversation(session, max_tokens, total_tokens) + tokens_cnt = self.discard_exceed_conversation(session, max_tokens, total_tokens) + logger.debug("raw total_tokens={}, savesession tokens={}".format(total_tokens, tokens_cnt)) def discard_exceed_conversation(self, session, max_tokens, total_tokens): dec_tokens = int(total_tokens) # logger.info("prompt tokens used={},max_tokens={}".format(used_tokens,max_tokens)) while dec_tokens > max_tokens: # pop first conversation - if len(session) > 3: + if len(session) > 2: session.pop(1) + elif len(session) == 2 and session[1]["role"] == "assistant": session.pop(1) + break + elif len(session) == 2 and session[1]["role"] == "user": + logger.warn("user message exceed max_tokens. total_tokens={}".format(dec_tokens)) + break else: + logger.debug("max_tokens={}, total_tokens={}, len(sessions)={}".format(max_tokens, dec_tokens, len(session))) break - dec_tokens = dec_tokens - max_tokens + try: + cur_tokens = num_tokens_from_messages(session, self.model) + dec_tokens = cur_tokens + except Exception as e: + logger.debug("Exception when counting tokens precisely for query: {}".format(e)) + dec_tokens = dec_tokens - max_tokens + return dec_tokens def clear_session(self, session_id): self.sessions[session_id] = [] def clear_all_session(self): self.sessions.clear() + +# refer to https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb +def num_tokens_from_messages(messages, model): + """Returns the number of tokens used by a list of messages.""" + import tiktoken + try: + encoding = tiktoken.encoding_for_model(model) + except KeyError: + logger.debug("Warning: model not found. Using cl100k_base encoding.") + encoding = tiktoken.get_encoding("cl100k_base") + if model == "gpt-3.5-turbo": + return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") + elif model == "gpt-4": + return num_tokens_from_messages(messages, model="gpt-4-0314") + elif model == "gpt-3.5-turbo-0301": + tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n + tokens_per_name = -1 # if there's a name, the role is omitted + elif model == "gpt-4-0314": + tokens_per_message = 3 + tokens_per_name = 1 + else: + logger.warn(f"num_tokens_from_messages() is not implemented for model {model}. Returning num tokens assuming gpt-3.5-turbo-0301.") + return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301") + num_tokens = 0 + for message in messages: + num_tokens += tokens_per_message + for key, value in message.items(): + num_tokens += len(encoding.encode(value)) + if key == "name": + num_tokens += tokens_per_name + num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> + return num_tokens \ No newline at end of file