# access LinkAI knowledge base platform # docs: https://link-ai.tech/platform/link-app/wechat import time import requests from bot.bot import Bot from bot.chatgpt.chat_gpt_session import ChatGPTSession from bot.session_manager import SessionManager from bridge.context import Context, ContextType from bridge.reply import Reply, ReplyType from common.log import logger from config import conf, pconf import threading from common import memory, utils import base64 class LinkAIBot(Bot): # authentication failed AUTH_FAILED_CODE = 401 NO_QUOTA_CODE = 406 def __init__(self): super().__init__() self.sessions = LinkAISessionManager(LinkAISession, model=conf().get("model") or "gpt-3.5-turbo") self.args = {} def reply(self, query, context: Context = None) -> Reply: if context.type == ContextType.TEXT: return self._chat(query, context) elif context.type == ContextType.IMAGE_CREATE: ok, res = self.create_img(query, 0) if ok: reply = Reply(ReplyType.IMAGE_URL, res) else: reply = Reply(ReplyType.ERROR, res) return reply else: reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type)) return reply def _chat(self, query, context, retry_count=0) -> Reply: """ 发起对话请求 :param query: 请求提示词 :param context: 对话上下文 :param retry_count: 当前递归重试次数 :return: 回复 """ if retry_count > 2: # exit from retry 2 times logger.warn("[LINKAI] failed after maximum number of retry times") return Reply(ReplyType.TEXT, "请再问我一次吧") try: # load config if context.get("generate_breaked_by"): logger.info(f"[LINKAI] won't set appcode because a plugin ({context['generate_breaked_by']}) affected the context") app_code = None else: app_code = context.kwargs.get("app_code") or conf().get("linkai_app_code") linkai_api_key = conf().get("linkai_api_key") session_id = context["session_id"] session_message = self.sessions.session_msg_query(query, session_id) logger.debug(f"[LinkAI] session={session_message}, session_id={session_id}") # image process img_cache = memory.USER_IMAGE_CACHE.get(session_id) if img_cache: messages = self._process_image_msg(app_code=app_code, session_id=session_id, query=query, img_cache=img_cache) if messages: session_message = messages model = conf().get("model") # remove system message if session_message[0].get("role") == "system": if app_code or model == "wenxin": session_message.pop(0) body = { "app_code": app_code, "messages": session_message, "model": model, # 对话模型的名称, 支持 gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4, wenxin, xunfei "temperature": conf().get("temperature"), "top_p": conf().get("top_p", 1), "frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 "presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 } file_id = context.kwargs.get("file_id") if file_id: body["file_id"] = file_id logger.info(f"[LINKAI] query={query}, app_code={app_code}, mode={body.get('model')}, file_id={file_id}") headers = {"Authorization": "Bearer " + linkai_api_key} # do http request base_url = conf().get("linkai_api_base", "https://api.link-ai.chat") res = requests.post(url=base_url + "/v1/chat/completions", json=body, headers=headers, timeout=conf().get("request_timeout", 180)) if res.status_code == 200: # execute success response = res.json() reply_content = response["choices"][0]["message"]["content"] total_tokens = response["usage"]["total_tokens"] logger.info(f"[LINKAI] reply={reply_content}, total_tokens={total_tokens}") self.sessions.session_reply(reply_content, session_id, total_tokens, query=query) agent_suffix = self._fetch_agent_suffix(response) if agent_suffix: reply_content += agent_suffix if not agent_suffix: knowledge_suffix = self._fetch_knowledge_search_suffix(response) if knowledge_suffix: reply_content += knowledge_suffix # image process if response["choices"][0].get("img_urls"): thread = threading.Thread(target=self._send_image, args=(context.get("channel"), context, response["choices"][0].get("img_urls"))) thread.start() return Reply(ReplyType.TEXT, reply_content) else: response = res.json() error = response.get("error") logger.error(f"[LINKAI] chat failed, status_code={res.status_code}, " f"msg={error.get('message')}, type={error.get('type')}") if res.status_code >= 500: # server error, need retry time.sleep(2) logger.warn(f"[LINKAI] do retry, times={retry_count}") return self._chat(query, context, retry_count + 1) return Reply(ReplyType.TEXT, "提问太快啦,请休息一下再问我吧") except Exception as e: logger.exception(e) # retry time.sleep(2) logger.warn(f"[LINKAI] do retry, times={retry_count}") return self._chat(query, context, retry_count + 1) def _process_image_msg(self, app_code: str, session_id: str, query:str, img_cache: dict): try: enable_image_input = False app_info = self._fetch_app_info(app_code) if not app_info: logger.debug(f"[LinkAI] not found app, can't process images, app_code={app_code}") return None plugins = app_info.get("data").get("plugins") for plugin in plugins: if plugin.get("input_type") and "IMAGE" in plugin.get("input_type"): enable_image_input = True if not enable_image_input: return msg = img_cache.get("msg") path = img_cache.get("path") msg.prepare() logger.info(f"[LinkAI] query with images, path={path}") messages = self._build_vision_msg(query, path) memory.USER_IMAGE_CACHE[session_id] = None return messages except Exception as e: logger.exception(e) def _build_vision_msg(self, query: str, path: str): try: suffix = utils.get_path_suffix(path) with open(path, "rb") as file: base64_str = base64.b64encode(file.read()).decode('utf-8') messages = [{ "role": "user", "content": [ { "type": "text", "text": query }, { "type": "image_url", "image_url": { "url": f"data:image/{suffix};base64,{base64_str}" } } ] }] return messages except Exception as e: logger.exception(e) def reply_text(self, session: ChatGPTSession, app_code="", retry_count=0) -> dict: if retry_count >= 2: # exit from retry 2 times logger.warn("[LINKAI] failed after maximum number of retry times") return { "total_tokens": 0, "completion_tokens": 0, "content": "请再问我一次吧" } try: body = { "app_code": app_code, "messages": session.messages, "model": conf().get("model") or "gpt-3.5-turbo", # 对话模型的名称, 支持 gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-4, wenxin, xunfei "temperature": conf().get("temperature"), "top_p": conf().get("top_p", 1), "frequency_penalty": conf().get("frequency_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 "presence_penalty": conf().get("presence_penalty", 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容 } if self.args.get("max_tokens"): body["max_tokens"] = self.args.get("max_tokens") headers = {"Authorization": "Bearer " + conf().get("linkai_api_key")} # do http request base_url = conf().get("linkai_api_base", "https://api.link-ai.chat") res = requests.post(url=base_url + "/v1/chat/completions", json=body, headers=headers, timeout=conf().get("request_timeout", 180)) if res.status_code == 200: # execute success response = res.json() reply_content = response["choices"][0]["message"]["content"] total_tokens = response["usage"]["total_tokens"] logger.info(f"[LINKAI] reply={reply_content}, total_tokens={total_tokens}") return { "total_tokens": total_tokens, "completion_tokens": response["usage"]["completion_tokens"], "content": reply_content, } else: response = res.json() error = response.get("error") logger.error(f"[LINKAI] chat failed, status_code={res.status_code}, " f"msg={error.get('message')}, type={error.get('type')}") if res.status_code >= 500: # server error, need retry time.sleep(2) logger.warn(f"[LINKAI] do retry, times={retry_count}") return self.reply_text(session, app_code, retry_count + 1) return { "total_tokens": 0, "completion_tokens": 0, "content": "提问太快啦,请休息一下再问我吧" } except Exception as e: logger.exception(e) # retry time.sleep(2) logger.warn(f"[LINKAI] do retry, times={retry_count}") return self.reply_text(session, app_code, retry_count + 1) def _fetch_app_info(self, app_code: str): headers = {"Authorization": "Bearer " + conf().get("linkai_api_key")} # do http request base_url = conf().get("linkai_api_base", "https://api.link-ai.chat") params = {"app_code": app_code} res = requests.get(url=base_url + "/v1/app/info", params=params, headers=headers, timeout=(5, 10)) if res.status_code == 200: return res.json() else: logger.warning(f"[LinkAI] find app info exception, res={res}") def create_img(self, query, retry_count=0, api_key=None): try: logger.info("[LinkImage] image_query={}".format(query)) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {conf().get('linkai_api_key')}" } data = { "prompt": query, "n": 1, "model": conf().get("text_to_image") or "dall-e-2", "response_format": "url", "img_proxy": conf().get("image_proxy") } url = conf().get("linkai_api_base", "https://api.link-ai.chat") + "/v1/images/generations" res = requests.post(url, headers=headers, json=data, timeout=(5, 90)) t2 = time.time() image_url = res.json()["data"][0]["url"] logger.info("[OPEN_AI] image_url={}".format(image_url)) return True, image_url except Exception as e: logger.error(format(e)) return False, "画图出现问题,请休息一下再问我吧" def _fetch_knowledge_search_suffix(self, response) -> str: try: if response.get("knowledge_base"): search_hit = response.get("knowledge_base").get("search_hit") first_similarity = response.get("knowledge_base").get("first_similarity") logger.info(f"[LINKAI] knowledge base, search_hit={search_hit}, first_similarity={first_similarity}") plugin_config = pconf("linkai") if plugin_config and plugin_config.get("knowledge_base") and plugin_config.get("knowledge_base").get("search_miss_text_enabled"): search_miss_similarity = plugin_config.get("knowledge_base").get("search_miss_similarity") search_miss_text = plugin_config.get("knowledge_base").get("search_miss_suffix") if not search_hit: return search_miss_text if search_miss_similarity and float(search_miss_similarity) > first_similarity: return search_miss_text except Exception as e: logger.exception(e) def _fetch_agent_suffix(self, response): try: plugin_list = [] logger.debug(f"[LinkAgent] res={response}") if response.get("agent") and response.get("agent").get("chain") and response.get("agent").get("need_show_plugin"): chain = response.get("agent").get("chain") suffix = "\n\n- - - - - - - - - - - -" i = 0 for turn in chain: plugin_name = turn.get('plugin_name') suffix += "\n" need_show_thought = response.get("agent").get("need_show_thought") if turn.get("thought") and plugin_name and need_show_thought: suffix += f"{turn.get('thought')}\n" if plugin_name: plugin_list.append(turn.get('plugin_name')) suffix += f"{turn.get('plugin_icon')} {turn.get('plugin_name')}" if turn.get('plugin_input'): suffix += f":{turn.get('plugin_input')}" if i < len(chain) - 1: suffix += "\n" i += 1 logger.info(f"[LinkAgent] use plugins: {plugin_list}") return suffix except Exception as e: logger.exception(e) def _send_image(self, channel, context, image_urls): if not image_urls: return try: for url in image_urls: reply = Reply(ReplyType.IMAGE_URL, url) channel.send(reply, context) except Exception as e: logger.error(e) class LinkAISessionManager(SessionManager): def session_msg_query(self, query, session_id): session = self.build_session(session_id) messages = session.messages + [{"role": "user", "content": query}] return messages def session_reply(self, reply, session_id, total_tokens=None, query=None): session = self.build_session(session_id) if query: session.add_query(query) session.add_reply(reply) try: max_tokens = conf().get("conversation_max_tokens", 2500) tokens_cnt = session.discard_exceeding(max_tokens, total_tokens) logger.info(f"[LinkAI] chat history discard, before tokens={total_tokens}, now tokens={tokens_cnt}") except Exception as e: logger.warning("Exception when counting tokens precisely for session: {}".format(str(e))) return session class LinkAISession(ChatGPTSession): def calc_tokens(self): try: cur_tokens = super().calc_tokens() except Exception as e: logger.debug("Exception when counting tokens precisely for query: {}".format(e)) cur_tokens = len(str(self.messages)) return cur_tokens def discard_exceeding(self, max_tokens, cur_tokens=None): cur_tokens = self.calc_tokens() if cur_tokens > max_tokens: for i in range(0, len(self.messages)): if i > 0 and self.messages[i].get("role") == "assistant" and self.messages[i - 1].get("role") == "user": self.messages.pop(i) self.messages.pop(i - 1) return self.calc_tokens() return cur_tokens