""" Google gemini bot @author zhayujie @Date 2023/12/15 """ # encoding:utf-8 from bot.bot import Bot import google.generativeai as genai from bot.session_manager import SessionManager from bridge.context import ContextType, Context from bridge.reply import Reply, ReplyType from common.log import logger from config import conf from bot.baidu.baidu_wenxin_session import BaiduWenxinSession # OpenAI对话模型API (可用) class GoogleGeminiBot(Bot): def __init__(self): super().__init__() self.api_key = conf().get("gemini_api_key") # 复用文心的token计算方式 self.sessions = SessionManager(BaiduWenxinSession, model=conf().get("model") or "gpt-3.5-turbo") def reply(self, query, context: Context = None) -> Reply: if context.type != ContextType.TEXT: logger.warn(f"[Gemini] Unsupported message type, type={context.type}") return Reply(ReplyType.TEXT, None) logger.info(f"[Gemini] query={query}") session_id = context["session_id"] session = self.sessions.session_query(query, session_id) gemini_messages = self._convert_to_gemini_messages(session.messages) genai.configure(api_key=self.api_key) model = genai.GenerativeModel('gemini-pro') response = model.generate_content(gemini_messages) reply_text = response.text self.sessions.session_reply(reply_text, session_id) logger.info(f"[Gemini] reply={reply_text}") return Reply(ReplyType.TEXT, reply_text) def _convert_to_gemini_messages(self, messages: list): res = [] for msg in messages: if msg.get("role") == "user": role = "user" elif msg.get("role") == "assistant": role = "model" else: continue res.append({ "role": role, "parts": [{"text": msg.get("content")}] }) return res