Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

215 lines
9.3KB

  1. # encoding:utf-8
  2. import json
  3. import time
  4. from typing import List, Tuple
  5. import openai
  6. import openai.error
  7. import broadscope_bailian
  8. from broadscope_bailian import ChatQaMessage
  9. from bot.bot import Bot
  10. from bot.ali.ali_qwen_session import AliQwenSession
  11. from bot.session_manager import SessionManager
  12. from bridge.context import ContextType
  13. from bridge.reply import Reply, ReplyType
  14. from common.log import logger
  15. from common import const
  16. from config import conf, load_config
  17. class AliQwenBot(Bot):
  18. def __init__(self):
  19. super().__init__()
  20. self.api_key_expired_time = self.set_api_key()
  21. self.sessions = SessionManager(AliQwenSession, model=conf().get("model", const.QWEN))
  22. def api_key_client(self):
  23. return broadscope_bailian.AccessTokenClient(access_key_id=self.access_key_id(), access_key_secret=self.access_key_secret())
  24. def access_key_id(self):
  25. return conf().get("qwen_access_key_id")
  26. def access_key_secret(self):
  27. return conf().get("qwen_access_key_secret")
  28. def agent_key(self):
  29. return conf().get("qwen_agent_key")
  30. def app_id(self):
  31. return conf().get("qwen_app_id")
  32. def node_id(self):
  33. return conf().get("qwen_node_id", "")
  34. def temperature(self):
  35. return conf().get("temperature", 0.2 )
  36. def top_p(self):
  37. return conf().get("top_p", 1)
  38. def reply(self, query, context=None):
  39. # acquire reply content
  40. if context.type == ContextType.TEXT:
  41. logger.info("[QWEN] query={}".format(query))
  42. session_id = context["session_id"]
  43. reply = None
  44. clear_memory_commands = conf().get("clear_memory_commands", ["#清除记忆"])
  45. if query in clear_memory_commands:
  46. self.sessions.clear_session(session_id)
  47. reply = Reply(ReplyType.INFO, "记忆已清除")
  48. elif query == "#清除所有":
  49. self.sessions.clear_all_session()
  50. reply = Reply(ReplyType.INFO, "所有人记忆已清除")
  51. elif query == "#更新配置":
  52. load_config()
  53. reply = Reply(ReplyType.INFO, "配置已更新")
  54. if reply:
  55. return reply
  56. session = self.sessions.session_query(query, session_id)
  57. logger.debug("[QWEN] session query={}".format(session.messages))
  58. reply_content = self.reply_text(session)
  59. logger.debug(
  60. "[QWEN] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(
  61. session.messages,
  62. session_id,
  63. reply_content["content"],
  64. reply_content["completion_tokens"],
  65. )
  66. )
  67. if reply_content["completion_tokens"] == 0 and len(reply_content["content"]) > 0:
  68. reply = Reply(ReplyType.ERROR, reply_content["content"])
  69. elif reply_content["completion_tokens"] > 0:
  70. self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
  71. reply = Reply(ReplyType.TEXT, reply_content["content"])
  72. else:
  73. reply = Reply(ReplyType.ERROR, reply_content["content"])
  74. logger.debug("[QWEN] reply {} used 0 tokens.".format(reply_content))
  75. return reply
  76. else:
  77. reply = Reply(ReplyType.ERROR, "Bot不支持处理{}类型的消息".format(context.type))
  78. return reply
  79. def reply_text(self, session: AliQwenSession, retry_count=0) -> dict:
  80. """
  81. call bailian's ChatCompletion to get the answer
  82. :param session: a conversation session
  83. :param retry_count: retry count
  84. :return: {}
  85. """
  86. try:
  87. prompt, history = self.convert_messages_format(session.messages)
  88. self.update_api_key_if_expired()
  89. # NOTE 阿里百炼的call()函数未提供temperature参数,考虑到temperature和top_p参数作用相同,取两者较小的值作为top_p参数传入,详情见文档 https://help.aliyun.com/document_detail/2587502.htm
  90. response = broadscope_bailian.Completions().call(app_id=self.app_id(), prompt=prompt, history=history, top_p=min(self.temperature(), self.top_p()))
  91. completion_content = self.get_completion_content(response, self.node_id())
  92. completion_tokens, total_tokens = self.calc_tokens(session.messages, completion_content)
  93. return {
  94. "total_tokens": total_tokens,
  95. "completion_tokens": completion_tokens,
  96. "content": completion_content,
  97. }
  98. except Exception as e:
  99. need_retry = retry_count < 2
  100. result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
  101. if isinstance(e, openai.error.RateLimitError):
  102. logger.warn("[QWEN] RateLimitError: {}".format(e))
  103. result["content"] = "提问太快啦,请休息一下再问我吧"
  104. if need_retry:
  105. time.sleep(20)
  106. elif isinstance(e, openai.error.Timeout):
  107. logger.warn("[QWEN] Timeout: {}".format(e))
  108. result["content"] = "我没有收到你的消息"
  109. if need_retry:
  110. time.sleep(5)
  111. elif isinstance(e, openai.error.APIError):
  112. logger.warn("[QWEN] Bad Gateway: {}".format(e))
  113. result["content"] = "请再问我一次"
  114. if need_retry:
  115. time.sleep(10)
  116. elif isinstance(e, openai.error.APIConnectionError):
  117. logger.warn("[QWEN] APIConnectionError: {}".format(e))
  118. need_retry = False
  119. result["content"] = "我连接不到你的网络"
  120. else:
  121. logger.exception("[QWEN] Exception: {}".format(e))
  122. need_retry = False
  123. self.sessions.clear_session(session.session_id)
  124. if need_retry:
  125. logger.warn("[QWEN] 第{}次重试".format(retry_count + 1))
  126. return self.reply_text(session, retry_count + 1)
  127. else:
  128. return result
  129. def set_api_key(self):
  130. api_key, expired_time = self.api_key_client().create_token(agent_key=self.agent_key())
  131. broadscope_bailian.api_key = api_key
  132. return expired_time
  133. def update_api_key_if_expired(self):
  134. if time.time() > self.api_key_expired_time:
  135. self.api_key_expired_time = self.set_api_key()
  136. def convert_messages_format(self, messages) -> Tuple[str, List[ChatQaMessage]]:
  137. history = []
  138. user_content = ''
  139. assistant_content = ''
  140. system_content = ''
  141. for message in messages:
  142. role = message.get('role')
  143. if role == 'user':
  144. user_content += message.get('content')
  145. elif role == 'assistant':
  146. assistant_content = message.get('content')
  147. history.append(ChatQaMessage(user_content, assistant_content))
  148. user_content = ''
  149. assistant_content = ''
  150. elif role =='system':
  151. system_content += message.get('content')
  152. if user_content == '':
  153. raise Exception('no user message')
  154. if system_content != '':
  155. # NOTE 模拟系统消息,测试发现人格描述以"你需要扮演ChatGPT"开头能够起作用,而以"你是ChatGPT"开头模型会直接否认
  156. system_qa = ChatQaMessage(system_content, '好的,我会严格按照你的设定回答问题')
  157. history.insert(0, system_qa)
  158. logger.debug("[QWEN] converted qa messages: {}".format([item.to_dict() for item in history]))
  159. logger.debug("[QWEN] user content as prompt: {}".format(user_content))
  160. return user_content, history
  161. def get_completion_content(self, response, node_id):
  162. if not response['Success']:
  163. return f"[ERROR]\n{response['Code']}:{response['Message']}"
  164. text = response['Data']['Text']
  165. if node_id == '':
  166. return text
  167. # TODO: 当使用流程编排创建大模型应用时,响应结构如下,最终结果在['finalResult'][node_id]['response']['text']中,暂时先这么写
  168. # {
  169. # 'Success': True,
  170. # 'Code': None,
  171. # 'Message': None,
  172. # 'Data': {
  173. # 'ResponseId': '9822f38dbacf4c9b8daf5ca03a2daf15',
  174. # 'SessionId': 'session_id',
  175. # 'Text': '{"finalResult":{"LLM_T7islK":{"params":{"modelId":"qwen-plus-v1","prompt":"${systemVars.query}${bizVars.Text}"},"response":{"text":"作为一个AI语言模型,我没有年龄,因为我没有生日。\n我只是一个程序,没有生命和身体。"}}}}',
  176. # 'Thoughts': [],
  177. # 'Debug': {},
  178. # 'DocReferences': []
  179. # },
  180. # 'RequestId': '8e11d31551ce4c3f83f49e6e0dd998b0',
  181. # 'Failed': None
  182. # }
  183. text_dict = json.loads(text)
  184. completion_content = text_dict['finalResult'][node_id]['response']['text']
  185. return completion_content
  186. def calc_tokens(self, messages, completion_content):
  187. completion_tokens = len(completion_content)
  188. prompt_tokens = 0
  189. for message in messages:
  190. prompt_tokens += len(message["content"])
  191. return completion_tokens, prompt_tokens + completion_tokens