Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

352 lines
15KB

  1. # encoding:utf-8
  2. import json
  3. import logging
  4. import os
  5. import pickle
  6. import copy
  7. from common.log import logger
  8. # 将所有可用的配置项写在字典里, 请使用小写字母
  9. # 此处的配置值无实际意义,程序不会读取此处的配置,仅用于提示格式,请将配置加入到config.json中
  10. available_setting = {
  11. # openai api配置
  12. "open_ai_api_key": "", # openai api key
  13. # openai apibase,当use_azure_chatgpt为true时,需要设置对应的api base
  14. "open_ai_api_base": "https://api.openai.com/v1",
  15. "proxy": "", # openai使用的代理
  16. # chatgpt模型, 当use_azure_chatgpt为true时,其名称为Azure上model deployment名称
  17. "model": "gpt-3.5-turbo", # 支持ChatGPT、Claude、Gemini、文心一言、通义千问、Kimi、讯飞星火、智谱、LinkAI等模型,模型具体名称详见common/const.py文件列出的模型
  18. "use_azure_chatgpt": False, # 是否使用azure的chatgpt
  19. "azure_deployment_id": "", # azure 模型部署名称
  20. "azure_api_version": "", # azure api版本
  21. # Bot触发配置
  22. "single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
  23. "single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
  24. "single_chat_reply_suffix": "", # 私聊时自动回复的后缀,\n 可以换行
  25. "group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
  26. "group_chat_reply_prefix": "", # 群聊时自动回复的前缀
  27. "group_chat_reply_suffix": "", # 群聊时自动回复的后缀,\n 可以换行
  28. "group_chat_keyword": [], # 群聊时包含该关键词则会触发机器人回复
  29. "group_at_off": False, # 是否关闭群聊时@bot的触发
  30. "group_name_white_list": ["ChatGPT测试群", "ChatGPT测试群2"], # 开启自动回复的群名称列表
  31. "group_name_keyword_white_list": [], # 开启自动回复的群名称关键词列表
  32. "group_chat_in_one_session": ["ChatGPT测试群"], # 支持会话上下文共享的群名称
  33. "nick_name_black_list": [], # 用户昵称黑名单
  34. "group_welcome_msg": "", # 配置新人进群固定欢迎语,不配置则使用随机风格欢迎
  35. "trigger_by_self": False, # 是否允许机器人触发
  36. "text_to_image": "dall-e-2", # 图片生成模型,可选 dall-e-2, dall-e-3
  37. # Azure OpenAI dall-e-3 配置
  38. "dalle3_image_style": "vivid", # 图片生成dalle3的风格,可选有 vivid, natural
  39. "dalle3_image_quality": "hd", # 图片生成dalle3的质量,可选有 standard, hd
  40. # Azure OpenAI DALL-E API 配置, 当use_azure_chatgpt为true时,用于将文字回复的资源和Dall-E的资源分开.
  41. "azure_openai_dalle_api_base": "", # [可选] azure openai 用于回复图片的资源 endpoint,默认使用 open_ai_api_base
  42. "azure_openai_dalle_api_key": "", # [可选] azure openai 用于回复图片的资源 key,默认使用 open_ai_api_key
  43. "azure_openai_dalle_deployment_id":"", # [可选] azure openai 用于回复图片的资源 deployment id,默认使用 text_to_image
  44. "image_proxy": True, # 是否需要图片代理,国内访问LinkAI时需要
  45. "image_create_prefix": ["画", "看", "找"], # 开启图片回复的前缀
  46. "concurrency_in_session": 1, # 同一会话最多有多少条消息在处理中,大于1可能乱序
  47. "image_create_size": "256x256", # 图片大小,可选有 256x256, 512x512, 1024x1024 (dall-e-3默认为1024x1024)
  48. "group_chat_exit_group": False,
  49. # chatgpt会话参数
  50. "expires_in_seconds": 3600, # 无操作会话的过期时间
  51. # 人格描述
  52. "character_desc": "你是ChatGPT, 一个由OpenAI训练的大型语言模型, 你旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。",
  53. "conversation_max_tokens": 1000, # 支持上下文记忆的最多字符数
  54. # chatgpt限流配置
  55. "rate_limit_chatgpt": 20, # chatgpt的调用频率限制
  56. "rate_limit_dalle": 50, # openai dalle的调用频率限制
  57. # chatgpt api参数 参考https://platform.openai.com/docs/api-reference/chat/create
  58. "temperature": 0.9,
  59. "top_p": 1,
  60. "frequency_penalty": 0,
  61. "presence_penalty": 0,
  62. "request_timeout": 180, # chatgpt请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间
  63. "timeout": 120, # chatgpt重试超时时间,在这个时间内,将会自动重试
  64. # Baidu 文心一言参数
  65. "baidu_wenxin_model": "eb-instant", # 默认使用ERNIE-Bot-turbo模型
  66. "baidu_wenxin_api_key": "", # Baidu api key
  67. "baidu_wenxin_secret_key": "", # Baidu secret key
  68. # 讯飞星火API
  69. "xunfei_app_id": "", # 讯飞应用ID
  70. "xunfei_api_key": "", # 讯飞 API key
  71. "xunfei_api_secret": "", # 讯飞 API secret
  72. # claude 配置
  73. "claude_api_cookie": "",
  74. "claude_uuid": "",
  75. # claude api key
  76. "claude_api_key":"",
  77. # 通义千问API, 获取方式查看文档 https://help.aliyun.com/document_detail/2587494.html
  78. "qwen_access_key_id": "",
  79. "qwen_access_key_secret": "",
  80. "qwen_agent_key": "",
  81. "qwen_app_id": "",
  82. "qwen_node_id": "", # 流程编排模型用到的id,如果没有用到qwen_node_id,请务必保持为空字符串
  83. # 阿里灵积(通义新版sdk)模型api key
  84. "dashscope_api_key": "",
  85. # Google Gemini Api Key
  86. "gemini_api_key": "",
  87. # wework的通用配置
  88. "wework_smart": True, # 配置wework是否使用已登录的企业微信,False为多开
  89. # 语音设置
  90. "speech_recognition": True, # 是否开启语音识别
  91. "group_speech_recognition": False, # 是否开启群组语音识别
  92. "voice_reply_voice": False, # 是否使用语音回复语音,需要设置对应语音合成引擎的api key
  93. "always_reply_voice": False, # 是否一直使用语音回复
  94. "voice_to_text": "openai", # 语音识别引擎,支持openai,baidu,google,azure
  95. "text_to_voice": "openai", # 语音合成引擎,支持openai,baidu,google,pytts(offline),azure,elevenlabs,edge(online)
  96. "text_to_voice_model": "tts-1",
  97. "tts_voice_id": "alloy",
  98. # baidu 语音api配置, 使用百度语音识别和语音合成时需要
  99. "baidu_app_id": "",
  100. "baidu_api_key": "",
  101. "baidu_secret_key": "",
  102. # 1536普通话(支持简单的英文识别) 1737英语 1637粤语 1837四川话 1936普通话远场
  103. "baidu_dev_pid": 1536,
  104. # azure 语音api配置, 使用azure语音识别和语音合成时需要
  105. "azure_voice_api_key": "",
  106. "azure_voice_region": "japaneast",
  107. # elevenlabs 语音api配置
  108. "xi_api_key": "", #获取ap的方法可以参考https://docs.elevenlabs.io/api-reference/quick-start/authentication
  109. "xi_voice_id": "", #ElevenLabs提供了9种英式、美式等英语发音id,分别是“Adam/Antoni/Arnold/Bella/Domi/Elli/Josh/Rachel/Sam”
  110. # 服务时间限制,目前支持itchat
  111. "chat_time_module": False, # 是否开启服务时间限制
  112. "chat_start_time": "00:00", # 服务开始时间
  113. "chat_stop_time": "24:00", # 服务结束时间
  114. # 翻译api
  115. "translate": "baidu", # 翻译api,支持baidu
  116. # baidu翻译api的配置
  117. "baidu_translate_app_id": "", # 百度翻译api的appid
  118. "baidu_translate_app_key": "", # 百度翻译api的秘钥
  119. # itchat的配置
  120. "hot_reload": False, # 是否开启热重载
  121. # wechaty的配置
  122. "wechaty_puppet_service_token": "", # wechaty的token
  123. # wechatmp的配置
  124. "wechatmp_token": "", # 微信公众平台的Token
  125. "wechatmp_port": 8080, # 微信公众平台的端口,需要端口转发到80或443
  126. "wechatmp_app_id": "", # 微信公众平台的appID
  127. "wechatmp_app_secret": "", # 微信公众平台的appsecret
  128. "wechatmp_aes_key": "", # 微信公众平台的EncodingAESKey,加密模式需要
  129. # wechatcom的通用配置
  130. "wechatcom_corp_id": "", # 企业微信公司的corpID
  131. # wechatcomapp的配置
  132. "wechatcomapp_token": "", # 企业微信app的token
  133. "wechatcomapp_port": 9898, # 企业微信app的服务端口,不需要端口转发
  134. "wechatcomapp_secret": "", # 企业微信app的secret
  135. "wechatcomapp_agent_id": "", # 企业微信app的agent_id
  136. "wechatcomapp_aes_key": "", # 企业微信app的aes_key
  137. # 飞书配置
  138. "feishu_port": 80, # 飞书bot监听端口
  139. "feishu_app_id": "", # 飞书机器人应用APP Id
  140. "feishu_app_secret": "", # 飞书机器人APP secret
  141. "feishu_token": "", # 飞书 verification token
  142. "feishu_bot_name": "", # 飞书机器人的名字
  143. # 钉钉配置
  144. "dingtalk_client_id": "", # 钉钉机器人Client ID
  145. "dingtalk_client_secret": "", # 钉钉机器人Client Secret
  146. "dingtalk_card_enabled": False,
  147. # chatgpt指令自定义触发词
  148. "clear_memory_commands": ["#清除记忆"], # 重置会话指令,必须以#开头
  149. # channel配置
  150. "channel_type": "", # 通道类型,支持:{wx,wxy,terminal,wechatmp,wechatmp_service,wechatcom_app,dingtalk}
  151. "subscribe_msg": "", # 订阅消息, 支持: wechatmp, wechatmp_service, wechatcom_app
  152. "debug": False, # 是否开启debug模式,开启后会打印更多日志
  153. "appdata_dir": "", # 数据目录
  154. # 插件配置
  155. "plugin_trigger_prefix": "$", # 规范插件提供聊天相关指令的前缀,建议不要和管理员指令前缀"#"冲突
  156. # 是否使用全局插件配置
  157. "use_global_plugin_config": False,
  158. "max_media_send_count": 3, # 单次最大发送媒体资源的个数
  159. "media_send_interval": 1, # 发送图片的事件间隔,单位秒
  160. # 智谱AI 平台配置
  161. "zhipu_ai_api_key": "",
  162. "zhipu_ai_api_base": "https://open.bigmodel.cn/api/paas/v4",
  163. "moonshot_api_key": "",
  164. "moonshot_base_url":"https://api.moonshot.cn/v1/chat/completions",
  165. # LinkAI平台配置
  166. "use_linkai": False,
  167. "linkai_api_key": "",
  168. "linkai_app_code": "",
  169. "linkai_api_base": "https://api.link-ai.tech", # linkAI服务地址
  170. }
  171. class Config(dict):
  172. def __init__(self, d=None):
  173. super().__init__()
  174. if d is None:
  175. d = {}
  176. for k, v in d.items():
  177. self[k] = v
  178. # user_datas: 用户数据,key为用户名,value为用户数据,也是dict
  179. self.user_datas = {}
  180. def __getitem__(self, key):
  181. if key not in available_setting:
  182. raise Exception("key {} not in available_setting".format(key))
  183. return super().__getitem__(key)
  184. def __setitem__(self, key, value):
  185. if key not in available_setting:
  186. raise Exception("key {} not in available_setting".format(key))
  187. return super().__setitem__(key, value)
  188. def get(self, key, default=None):
  189. try:
  190. return self[key]
  191. except KeyError as e:
  192. return default
  193. except Exception as e:
  194. raise e
  195. # Make sure to return a dictionary to ensure atomic
  196. def get_user_data(self, user) -> dict:
  197. if self.user_datas.get(user) is None:
  198. self.user_datas[user] = {}
  199. return self.user_datas[user]
  200. def load_user_datas(self):
  201. try:
  202. with open(os.path.join(get_appdata_dir(), "user_datas.pkl"), "rb") as f:
  203. self.user_datas = pickle.load(f)
  204. logger.info("[Config] User datas loaded.")
  205. except FileNotFoundError as e:
  206. logger.info("[Config] User datas file not found, ignore.")
  207. except Exception as e:
  208. logger.info("[Config] User datas error: {}".format(e))
  209. self.user_datas = {}
  210. def save_user_datas(self):
  211. try:
  212. with open(os.path.join(get_appdata_dir(), "user_datas.pkl"), "wb") as f:
  213. pickle.dump(self.user_datas, f)
  214. logger.info("[Config] User datas saved.")
  215. except Exception as e:
  216. logger.info("[Config] User datas error: {}".format(e))
  217. config = Config()
  218. def drag_sensitive(config):
  219. try:
  220. if isinstance(config, str):
  221. conf_dict: dict = json.loads(config)
  222. conf_dict_copy = copy.deepcopy(conf_dict)
  223. for key in conf_dict_copy:
  224. if "key" in key or "secret" in key:
  225. if isinstance(key, str):
  226. conf_dict_copy[key] = conf_dict_copy[key][0:3] + "*" * 5 + conf_dict_copy[key][-3:]
  227. return json.dumps(conf_dict_copy, indent=4)
  228. elif isinstance(config, dict):
  229. config_copy = copy.deepcopy(config)
  230. for key in config:
  231. if "key" in key or "secret" in key:
  232. if isinstance(key, str):
  233. config_copy[key] = config_copy[key][0:3] + "*" * 5 + config_copy[key][-3:]
  234. return config_copy
  235. except Exception as e:
  236. logger.exception(e)
  237. return config
  238. return config
  239. def load_config():
  240. global config
  241. config_path = "./config.json"
  242. if not os.path.exists(config_path):
  243. logger.info("配置文件不存在,将使用config-template.json模板")
  244. config_path = "./config-template.json"
  245. config_str = read_file(config_path)
  246. logger.debug("[INIT] config str: {}".format(drag_sensitive(config_str)))
  247. # 将json字符串反序列化为dict类型
  248. config = Config(json.loads(config_str))
  249. # override config with environment variables.
  250. # Some online deployment platforms (e.g. Railway) deploy project from github directly. So you shouldn't put your secrets like api key in a config file, instead use environment variables to override the default config.
  251. for name, value in os.environ.items():
  252. name = name.lower()
  253. if name in available_setting:
  254. logger.info("[INIT] override config by environ args: {}={}".format(name, value))
  255. try:
  256. config[name] = eval(value)
  257. except:
  258. if value == "false":
  259. config[name] = False
  260. elif value == "true":
  261. config[name] = True
  262. else:
  263. config[name] = value
  264. if config.get("debug", False):
  265. logger.setLevel(logging.DEBUG)
  266. logger.debug("[INIT] set log level to DEBUG")
  267. logger.info("[INIT] load config: {}".format(drag_sensitive(config)))
  268. config.load_user_datas()
  269. def get_root():
  270. return os.path.dirname(os.path.abspath(__file__))
  271. def read_file(path):
  272. with open(path, mode="r", encoding="utf-8") as f:
  273. return f.read()
  274. def conf():
  275. return config
  276. def get_appdata_dir():
  277. data_path = os.path.join(get_root(), conf().get("appdata_dir", ""))
  278. if not os.path.exists(data_path):
  279. logger.info("[INIT] data path not exists, create it: {}".format(data_path))
  280. os.makedirs(data_path)
  281. return data_path
  282. def subscribe_msg():
  283. trigger_prefix = conf().get("single_chat_prefix", [""])[0]
  284. msg = conf().get("subscribe_msg", "")
  285. return msg.format(trigger_prefix=trigger_prefix)
  286. # global plugin config
  287. plugin_config = {}
  288. def write_plugin_config(pconf: dict):
  289. """
  290. 写入插件全局配置
  291. :param pconf: 全量插件配置
  292. """
  293. global plugin_config
  294. for k in pconf:
  295. plugin_config[k.lower()] = pconf[k]
  296. def pconf(plugin_name: str) -> dict:
  297. """
  298. 根据插件名称获取配置
  299. :param plugin_name: 插件名称
  300. :return: 该插件的配置项
  301. """
  302. return plugin_config.get(plugin_name.lower())
  303. # 全局配置,用于存放全局生效的状态
  304. global_config = {
  305. "admin_users": []
  306. }