|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # encoding:utf-8
-
- from bot.bot import Bot
- from bot.chatgpt.chat_gpt_session import ChatGPTSession
- from bot.openai.open_ai_image import OpenAIImage
- from bot.session_manager import Session, SessionManager
- from bridge.context import ContextType
- from bridge.reply import Reply, ReplyType
- from config import conf, load_config
- from common.log import logger
- from common.token_bucket import TokenBucket
- from common.expired_dict import ExpiredDict
- import openai
- import openai.error
- import time
-
- # OpenAI对话模型API (可用)
- class ChatGPTBot(Bot,OpenAIImage):
- def __init__(self):
- super().__init__()
- # set the default api_key
- openai.api_key = conf().get('open_ai_api_key')
- if conf().get('open_ai_api_base'):
- openai.api_base = conf().get('open_ai_api_base')
- proxy = conf().get('proxy')
- if proxy:
- openai.proxy = proxy
- if conf().get('rate_limit_chatgpt'):
- self.tb4chatgpt = TokenBucket(conf().get('rate_limit_chatgpt', 20))
-
- self.sessions = SessionManager(ChatGPTSession, model= conf().get("model") or "gpt-3.5-turbo")
-
- def reply(self, query, context=None):
- # acquire reply content
- if context.type == ContextType.TEXT:
- logger.info("[CHATGPT] query={}".format(query))
-
-
- session_id = context['session_id']
- reply = None
- clear_memory_commands = conf().get('clear_memory_commands', ['#清除记忆'])
- if query in clear_memory_commands:
- self.sessions.clear_session(session_id)
- reply = Reply(ReplyType.INFO, '记忆已清除')
- elif query == '#清除所有':
- self.sessions.clear_all_session()
- reply = Reply(ReplyType.INFO, '所有人记忆已清除')
- elif query == '#更新配置':
- load_config()
- reply = Reply(ReplyType.INFO, '配置已更新')
- if reply:
- return reply
- session = self.sessions.session_query(query, session_id)
- logger.debug("[CHATGPT] session query={}".format(session.messages))
-
- api_key = context.get('openai_api_key')
-
- # if context.get('stream'):
- # # reply in stream
- # return self.reply_text_stream(query, new_query, session_id)
-
- reply_content = self.reply_text(session, session_id, api_key, 0)
- logger.debug("[CHATGPT] new_query={}, session_id={}, reply_cont={}, completion_tokens={}".format(session.messages, session_id, reply_content["content"], reply_content["completion_tokens"]))
- if reply_content['completion_tokens'] == 0 and len(reply_content['content']) > 0:
- reply = Reply(ReplyType.ERROR, reply_content['content'])
- elif reply_content["completion_tokens"] > 0:
- self.sessions.session_reply(reply_content["content"], session_id, reply_content["total_tokens"])
- reply = Reply(ReplyType.TEXT, reply_content["content"])
- else:
- reply = Reply(ReplyType.ERROR, reply_content['content'])
- logger.debug("[CHATGPT] reply {} used 0 tokens.".format(reply_content))
- return reply
-
- elif context.type == ContextType.IMAGE_CREATE:
- ok, retstring = self.create_img(query, 0)
- reply = None
- if ok:
- reply = Reply(ReplyType.IMAGE_URL, retstring)
- else:
- reply = Reply(ReplyType.ERROR, retstring)
- return reply
- else:
- reply = Reply(ReplyType.ERROR, 'Bot不支持处理{}类型的消息'.format(context.type))
- return reply
-
- def compose_args(self):
- return {
- "model": conf().get("model") or "gpt-3.5-turbo", # 对话模型的名称
- "temperature":conf().get('temperature', 0.9), # 值在[0,1]之间,越大表示回复越具有不确定性
- # "max_tokens":4096, # 回复最大的字符数
- "top_p":1,
- "frequency_penalty":conf().get('frequency_penalty', 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
- "presence_penalty":conf().get('presence_penalty', 0.0), # [-2,2]之间,该值越大则更倾向于产生不同的内容
- "request_timeout": conf().get('request_timeout', 60), # 请求超时时间,openai接口默认设置为600,对于难问题一般需要较长时间
- "timeout": conf().get('request_timeout', 120), #重试超时时间,在这个时间内,将会自动重试
- }
-
- def reply_text(self, session:ChatGPTSession, session_id, api_key, retry_count=0) -> dict:
- '''
- call openai's ChatCompletion to get the answer
- :param session: a conversation session
- :param session_id: session id
- :param retry_count: retry count
- :return: {}
- '''
- try:
- if conf().get('rate_limit_chatgpt') and not self.tb4chatgpt.get_token():
- raise openai.error.RateLimitError("RateLimitError: rate limit exceeded")
- # if api_key == None, the default openai.api_key will be used
- response = openai.ChatCompletion.create(
- api_key=api_key, messages=session.messages, **self.compose_args()
- )
- # logger.info("[ChatGPT] reply={}, total_tokens={}".format(response.choices[0]['message']['content'], response["usage"]["total_tokens"]))
- return {"total_tokens": response["usage"]["total_tokens"],
- "completion_tokens": response["usage"]["completion_tokens"],
- "content": response.choices[0]['message']['content']}
- except Exception as e:
- need_retry = retry_count < 2
- result = {"completion_tokens": 0, "content": "我现在有点累了,等会再来吧"}
- if isinstance(e, openai.error.RateLimitError):
- logger.warn("[CHATGPT] RateLimitError: {}".format(e))
- result['content'] = "提问太快啦,请休息一下再问我吧"
- if need_retry:
- time.sleep(5)
- elif isinstance(e, openai.error.Timeout):
- logger.warn("[CHATGPT] Timeout: {}".format(e))
- result['content'] = "我没有收到你的消息"
- if need_retry:
- time.sleep(5)
- elif isinstance(e, openai.error.APIConnectionError):
- logger.warn("[CHATGPT] APIConnectionError: {}".format(e))
- need_retry = False
- result['content'] = "我连接不到你的网络"
- else:
- logger.warn("[CHATGPT] Exception: {}".format(e))
- need_retry = False
- self.sessions.clear_session(session_id)
-
- if need_retry:
- logger.warn("[CHATGPT] 第{}次重试".format(retry_count+1))
- return self.reply_text(session, session_id, api_key, retry_count+1)
- else:
- return result
-
-
- class AzureChatGPTBot(ChatGPTBot):
- def __init__(self):
- super().__init__()
- openai.api_type = "azure"
- openai.api_version = "2023-03-15-preview"
-
- def compose_args(self):
- args = super().compose_args()
- args["deployment_id"] = conf().get("azure_deployment_id")
- #args["engine"] = args["model"]
- #del(args["model"])
- return args
|