seninel部署
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
Eric Zhao e58267012d Bump version to 1.8.1-SNAPSHOT pirms 4 gadiem
..
src/main/java/com/alibaba/csp/sentinel/demo/dubbo Polish Dubbo 2.6.x adapter and unify callback registry into DubboAdapterGlobalConfig (#1572) pirms 4 gadiem
README.md doc: fix typo in README of Sentinel Dubbo Demo (#425) pirms 5 gadiem
pom.xml Bump version to 1.8.1-SNAPSHOT pirms 4 gadiem

README.md

Sentinel Dubbo Demo

Sentinel 提供了与 Dubbo 整合的模块 - Sentinel Dubbo Adapter,主要包括针对 Service Provider 和 Service Consumer 实现的 Filter。使用时用户只需引入以下模块(以 Maven 为例):

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-dubbo-adapter</artifactId>
    <version>x.y.z</version>
</dependency>

引入此依赖后,Dubbo 的服务接口和方法(包括调用端和服务端)就会成为 Sentinel 中的资源,在配置了规则后就可以自动享受到 Sentinel 的防护能力。

注:若希望接入 Dashboard,请参考后面接入控制台的步骤。只引入 Sentinel Dubbo Adapter 无法接入控制台!

若不希望开启 Sentinel Dubbo Adapter 中的某个 Filter,可以手动关闭对应的 Filter,比如:

@Bean
public ConsumerConfig consumerConfig() {
    ConsumerConfig consumerConfig = new ConsumerConfig();
    consumerConfig.setFilter("-sentinel.dubbo.consumer.filter");
    return consumerConfig;
}

我们提供了几个具体的 Demo 来分别演示 Provider 和 Consumer 的限流场景。

Service Provider

Service Provider 用于向外界提供服务,处理各个消费者的调用请求。为了保护 Provider 不被激增的流量拖垮影响稳定性,可以给 Provider 配置 QPS 模式的限流,这样当每秒的请求量超过设定的阈值时会自动拒绝多的请求。限流粒度可以是服务接口和服务方法两种粒度。若希望整个服务接口的 QPS 不超过一定数值,则可以为对应服务接口资源(resourceName 为接口全限定名)配置 QPS 阈值;若希望服务的某个方法的 QPS 不超过一定数值,则可以为对应服务方法资源(resourceName 为接口全限定名:方法签名)配置 QPS 阈值。有关配置详情请参考 流量控制 | Sentinel

Demo 1 演示了此限流场景,我们看一下这种模式的限流产生的效果。假设我们已经定义了某个服务接口 com.alibaba.csp.sentinel.demo.dubbo.FooService,其中有一个方法 sayHello(java.lang.String),Provider 端该方法设定 QPS 阈值为 10。在 Consumer 端在 1s 之内连续发起 15 次调用,可以通过日志文件看到 Provider 端被限流。拦截日志统一记录在 ~/logs/csp/sentinel-block.log 中:

2018-07-24 17:13:43|1|com.alibaba.csp.sentinel.demo.dubbo.FooService:sayHello(java.lang.String),FlowException,default,|5,0

在 Provider 对应的 metrics 日志中也有记录:

1532423623000|2018-07-24 17:13:43|com.alibaba.csp.sentinel.demo.dubbo.FooService|15|0|15|0|3
1532423623000|2018-07-24 17:13:43|com.alibaba.csp.sentinel.demo.dubbo.FooService:sayHello(java.lang.String)|10|5|10|0|0

很多场景下,根据调用方来限流也是非常重要的。比如有两个服务 A 和 B 都向 Service Provider 发起调用请求,我们希望只对来自服务 B 的请求进行限流,则可以设置限流规则的 limitApp 为服务 B 的名称。Sentinel Dubbo Adapter 会自动解析 Dubbo 消费者(调用方)的 application name 作为调用方名称(origin),在进行资源保护的时候都会带上调用方名称。若限流规则未配置调用方(default),则该限流规则对所有调用方生效。若限流规则配置了调用方则限流规则将仅对指定调用方生效。

注:Dubbo 默认通信不携带对端 application name 信息,因此需要开发者在调用端手动将 application name 置入 attachment 中,provider 端进行相应的解析。Sentinel Dubbo Adapter 实现了一个 Filter 用于自动从 consumer 端向 provider 端透传 application name。若调用端未引入 Sentinel Dubbo Adapter,又希望根据调用端限流,可以在调用端手动将 application name 置入 attachment 中,key 为 dubboApplication

在限流日志中会也会记录调用方的名称,如:

2018-07-25 16:26:48|1|com.alibaba.csp.sentinel.demo.dubbo.FooService:sayHello(java.lang.String),FlowException,default,demo-consumer|5,0

其中日志中的 demo-consumer 即为调用方名称。

Service Consumer

对服务消费方的流量控制可分为控制并发线程数服务降级两个维度。

并发线程数限流

Service Consumer 作为客户端去调用远程服务。每一个服务都可能会依赖几个下游服务,若某个服务 A 依赖的下游服务 B 出现了不稳定的情况,服务 A 请求服务 B 的响应时间变长,从而服务 A 调用服务 B 的线程就会产生堆积,最终可能耗尽服务 A 的线程数。我们通过用并发线程数来控制对下游服务 B 的访问,来保证下游服务不可靠的时候,不会拖垮服务自身。基于这种场景,推荐给 Consumer 配置线程数模式的限流,来保证自身不被不稳定服务所影响。限流粒度同样可以是服务接口和服务方法两种粒度。

采用基于线程数的限流模式后,我们不需要再显式地去进行线程池隔离,Sentinel 会控制资源的线程数,超出的请求直接拒绝,直到堆积的线程处理完成。

Demo 2 演示了此限流场景,我们看一下这种模式的效果。假设当前服务 A 依赖两个远程服务方法 sayHello(java.lang.String)doAnother()。前者远程调用的响应时间 为 1s-1.5s之间,后者 RT 非常小(30 ms 左右)。服务 A 端设两个远程方法 thread count 为 5。然后每隔 50 ms 左右向线程池投入两个任务,作为消费者分别远程调用对应方法,持续 10 次。可以看到 sayHello 方法被限流 5 次,因为后面调用的时候前面的远程调用还未返回(RT 高);而 doAnother() 调用则不受影响。线程数目超出时快速失败能够有效地防止自己被慢调用所影响。

服务降级

当服务依赖于多个下游服务,而某个下游服务调用非常慢时,会严重影响当前服务的调用。这里我们可以利用 Sentinel 熔断降级的功能,为调用端配置基于平均 RT 的降级规则。这样当调用链路中某个服务调用的平均 RT 升高,在一定的次数内超过配置的 RT 阈值,Sentinel 就会对此调用资源进行降级操作,接下来的调用都会立刻拒绝,直到过了一段设定的时间后才恢复,从而保护服务不被调用端短板所影响。同时可以配合 fallback 功能使用,在被降级的时候提供相应的处理逻辑。

Fallback

从 0.1.1 版本开始,Sentinel Dubbo Adapter 还支持配置全局的 fallback 函数,可以在 Dubbo 服务被限流/降级/负载保护的时候进行相应的 fallback 处理。用户只需要实现自定义的 DubboFallback 接口,并通过 DubboFallbackRegistry 注册即可。默认情况会直接将 BlockException 包装后抛出。同时,我们还可以配合 Dubbo 的 fallback 机制 来为降级的服务提供替代的实现。

Demo 2 的 Consumer 端提供了一个简单的 fallback 示例。

Sentinel Dashboard

Sentinel 还提供 API 用于获取实时的监控信息,对应文档见此处。为了便于使用,Sentinel 还提供了一个控制台(Dashboard)用于配置规则、查看监控、机器发现等功能。

接入 Dashboard 的步骤(缺一不可):

  1. 按照 Sentinel 控制台文档 启动控制台
  2. 应用引入 sentinel-transport-simple-http 依赖,以便控制台可以拉取对应应用的相关信息
  3. 给应用添加相关的启动参数,启动应用。需要配置的参数有:
    • -Dcsp.sentinel.api.port:客户端的 port,用于上报相关信息
    • -Dcsp.sentinel.dashboard.server:控制台的地址
    • -Dproject.name:应用名称,会在控制台中显示

注意某些环境下本地运行 Dubbo 服务还需要加上 -Djava.net.preferIPv4Stack=true 参数。比如 Service Provider 示例的启动参数:

-Djava.net.preferIPv4Stack=true -Dcsp.sentinel.api.port=8720 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=dubbo-provider-demo

Service Consumer 示例的启动参数:

-Djava.net.preferIPv4Stack=true -Dcsp.sentinel.api.port=8721 -Dcsp.sentinel.dashboard.server=localhost:8080 -Dproject.name=dubbo-consumer-demo

这样在启动 Service Provider 和 Service Consumer 示例以后,就可以在 Sentinel 控制台中找到我们的服务了。可以很方便地在控制台中配置限流规则:

规则配置

或者查看实时监控数据:

秒级实时监控